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1 CLASSICAL COSMOLOGY

Several satellites that we have sent out there,1 into the empty and cold darkness of space, have
provided enough data to prove what Hubble already stated in 1929 [1]: Every galaxy far away
(and not so far away) from us is in the process of getting further away. What is more, their
distance is increasing even faster today that it was yesterday [2, 3]. It could be, perhaps, due
to the fact that the Universe itself sees human beings as a potential plague, and wants to avoid
us. Or could be that some sort of colossal multidimensional being has decided to stretch the
fabric of spacetime itself, just for fun. Nonsense aside, the most widely accepted reason for the
accelerating expansion of the universe today is Dark Energy. And what is Dark Energy? Where
does it come from? What it is and its origin are still open questions. But let us first go back more
than a century ago, to understand the synthesis of our current comprenhesion of the cosmos.

Einstein published his theory of General Relativity (GR) [4, 5] in 1915. The world did not be-
come a better place due to this, but at least we were provided with a ridiculous powerful tool to
describe gravitational events. In years following its publication, Friedmann, Hubble, Lemaître
[1, 6, 7] (among many others) used general relativity technology to describe the Universe as a
whole. Their work set the foundations for what we call today The Standard Model of Cosmology
(a.k.a. Λ-CDM model) [2,8,9].2 There are three main components that give name to this model:

• Dark energy, an unknown form of energy related to the vacuum expectation value, that

1Plus all evidence collected also from the Earth’s surface.
2Worthy of a Nobel prize, awarded to Jim Peebles in 2019.
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causes spacetime to expand at an accelerated rate. The cosmological constant Λ, which
Einstein introduced in his equations has been reassigned to represent the dark energy
density.

• Cold Dark Matter, a hypothetical non-relativistic type of matter with no known interac-
tions with regular matter other than gravitational. Its presence can be inferred by the
measuring rotational velocities of spiral galaxies [10, 11].

• Regular relativistic and non-relativistic ordinary matter, such as electromagnetic radia-
tion and the atoms that form observable structures like ourselves.

This model can provide a resonably good account of the following observed features of the
universe:

• The existence of the Comic Microwave Background (CMB), remnant radiation from the
early universe that was released as the early hot universe cooled down, creating a ho-
mogenous wall of radiation, "visible" at radio frequencies (see the CMB temperature dis-
tribution in figure 1).

• The observed abundances of light elements such as hydrogen, helium and lithium. Pre-
dictions of these distributions can be compared with the measured power spectrum and
anisotropies of the CMB, which contain observational evidence for these abundances
produced during the nucleosynthesis process.3

• Large-scale structures in the distribution of galaxies.

• The observed accelerating expansion of the universe at large scales.

This model is good enough to describe our current observations of the Universe. And not only
that. If we reversed the observed expansion back to very close to the beginning of everything,
we could still have a really good description of the events happening in the almost newborn
Universe. This model has four really simple foundations:

1. Copernican: Our planet occupies no special position in the Universe.

2. GR + Expansion: The assumption that the gravitational dynamics of the universe are cor-
rectly described by Einstein equation.

3. Hubble’s discovery: The observations performed during 1929 by Edwin Hubble showed
that the greater the distance between any two galaxies, the greater their relative speed
of separation [1]. As Lemaître later showed, it is not that galaxies are moving away from
each other, but spacetime stretching, i.e. the universe is expanding [12].

4. Perfect fluidity: We can assume that all the contents of the Universe behave like a perfect
fluid, i.e. they are not sticky.

Of course this model has its flaws, but we leave these downsides for future lines in section
1.2. At really big scales, Copernican principle holds. No point in space has a special position.
Wherever you sit at and look at, everything is more or less the same. In technical words, this
means homogeneity and isotropy. The next step is to find a reliable way to measure distances
so that we can describe the geometry of spacetime. This is given by the line invariant, which
takes the famous FLRW 4 form, adequate to describe a Lorentzian signature spacetime with a

3The production of light nuclei other than the hydrogen during the early phases of the universe.
4Friedmann-Lemaître-Robertson-Walker.
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high degree of symmetry like the one we seem to live in. This can be written as:

ds2 = gabdxadxb

=−N 2(t )dt 2 +a(t )2
(

dr 2

1−kr 2 + r 2 (
dθ2 + sin[θ]2dφ2)) ,

(1)

where N (t ) is a lapse function5 and a(t ) is the scale factor that describes the size of the three-
dimensional spatial slices. We will see later that the behaviour of a(t ) it is tightly constrained
by any type of energy densities that the geometry may contain.

Before we start talking about the spatial properties of the previous line invariant (1), let us first
discuss about the lapse function N (t ). This function is responsible for time reparametrisation
invariance. As we do not want to overcomplicate our computation, the most useful and conve-
nient choices for N (t ) are:

• N (t ) = 1: This is the choice of global time, t . Any clock measuring this choice of time is
moving along the Hubble flow, which is just the motion of astronomical objects just due
to the expansion of the universe.

• N (t ) = a(t ): This is the so-called conformal time, η. The conformal time is the amount of
time it would take a photon to travel from where we are located at to the furthest observ-
able distance.

The extra parameter we have not talked about yet is k. This has the power to change the topol-
ogy of the spatial sections in the line invariant. It comes in three different flavours [6]:

• k = 0: A rather boring case. No curvature, where the spatial sections of the geometry are
flat, like R3.

• k = 1: At this value, the spatial sections are closed, as in S3.

• k =−1: Spatial sections are open, as in the hyperboloidH3.

So the line invariant (1) allows us to describe a dynamical universe with different types of spatial
curvature. What are we supposed to do with this tool? How do we get a specific equation(s) that
explicitly describe the evolution of the universe in terms of its curvature and content? It is at
this point where Einstein’s equation comes in.

1.1 Friedmann equations

Einstein’s equations are Equation of Motions (EOM) that can be used to describe the dynamics
of the universe. These equations can be obtained by extremising the Einstein-Hilbert action

S[gM N ,φi ] =
∫

dD X
√|g |

(
R(D)

2κD
+Lmat(φi ,dφi )

)
, (2)

with
√|g | the square root of the minus determinant of the metric, Lmat as the matter la-

grangian of some fields φi , coupled to gravity and R is the Ricci scalar, which carries geomet-
rical information. κD encodes information about the D-dimensional Newton’s gravitational
constant as:6

κD = 8πGD = M 2−D
Pl = ℓD−2

Pl , (3)

5A general function depending on time and other coordinates. The "duration" of the measured time intervals
depends on the choice of this function.

6Note that we will work with ×= c = 1. This will always be the case unless otherwise specified.
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where MPl and ℓPl are the Planck mass and length for D dimensions.7 As we are working out
the classical cosmology scenario, so far we will stick to D = 4. To obtain the Einstein equations,
we need only to vary the action (2) with respect to gM N (gab now that we fix the dimensions to
four) to obtain:

Rab − 1
2 gabR︸ ︷︷ ︸

Gab

= κ4

(
Lmat gab −2

δLmat

δg ab︸ ︷︷ ︸
Tab

)
= κ4Tab . (4)

The left-hand side of equation (4) condenses pure geometry information in the Einstein ten-
sor Gab , while the right-hand side represents the matter field contribution. This is packed
into a rank two tensor called the energy-momentum tensor Tab . As we assume that the uni-
verse is homogenous, isotropic and its contents can be described as a perfect fluid, the energy-
momentum (EM) tensor takes the simple form:

Tab = (ρ+p) uaub +p gab , (5)

where ua = (−N (t ),0,0,0) is the fluid four-velocity, and (ρ, p) its energy density and pressure.
These can be used to describe pressureless matter (dust) or relativistic one (radiation), among
others. As energy is a conserved quantity, the EM tensor must also be conserved, i.e. ∇aT ab = 0.

From the clear relationship between geometry and matter content in Einstein equation (4),
Wheeler once stated: "Spacetime tells matter how to move; matter tells spacetime how to curve".
If we choose N (t ) = 1 (i.e. global time coordinate) for the FLRW metric (1) described above, the
Einstein’s equation yields two equations8 of the form:

ȧ2

a2 = 8πG4

3

∑
i
ρi − k

a2 , (6)

ä

a
=−4πG4

3

(∑
i
ρi +3pi

)
, (7)

where ȧ
a is the Hubble rate H , which measures the expansion of the universe (static when H =

0). These are the Friedmann equations.

The first Friedmann equation (6) describes how the expansion rate of the universe is gov-
erned by its content and topology, while the second equation (7) describes for its accelera-
tion. It is easy to observe that if the universe is expanding faster every day, this implies that(∑

i ρi +3pi
) < 0 in Eq. (7). In order to obtain information about what may be responsible for

this behaviour, we need to characterise different types of content. This is done by the equation
of state, which relates pressure to energy density asω= p

ρ . Any type of matter withω>−1/3, will
be responsible for any decelerated expansion of the universe. On the other hand, any content
withω<−1/3 will accelerate the expansion.9 We clearly observe that the universe is expanding
in this era, but there is nothing that we have (yet) discovered that can be identified with this
equation of state. As the universe is a dark place, and this unknown energy density seems to be
the source of the accelerated expansion, it has been given the famous name of dark energy.10 In
general, the value of the state parameter for any energy density can be determined from basic
principles such as:

7Planck scales makes refer to scales at which quantum effects of gravity become significant. When this energy
scale is reached, gravity cannot be ignored in other fundamental interactions.

8One for the tt-component and three identical copies for the spatial ones.
9This follows from the Null Energy Condition (NEC) [15]. This condition states that the matter energy- momen-

tum tensor TM N obeys
TM N nN nM > 0, (8)

for any null or light-like vector nM , i.e. for any vector satisfying gM N nM nN = 0. This implies that ω is bounded as
−1 ≤ω≤ 1.

10The first appearance of the term "dark energy" can be found in [16].
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Figure 1: The Cosmic Microwave Background (CMB) [13,14]. This radiation background fills all
of observable space. It is a remnant of the early universe, when it was filled with a hot-plasma
of sub-atomic particles that did not allow photons to travel freely. When the plasma cooled
down and neutral atoms could form, the scattering stopped and photons were released in the
distribution observed above, carrying information about temperature fluctuations in the early
era of the universe. The distribution of densities and the Hubble constant H0 can be extracted
from this imprinted background of the early universe. Credit: ESA/Planck Collaboration.

• In the case we consider non-relativistic matter, the energy density ρm is dominated by
the rest mass energy E = mc2, as the momentum, and hence, the exerted pressure are
negligible compared to ρm . Thus, to a good approximation, ω≃ 0.

• For radiation, we are now dealing with relativistic effects. Following the same reasoning
as before, the pressure, which is proportional to the velocity v ≃ c will be relevant. As-
suming an isotropic distribution of the pressure across the three spatial dimensions, this
can be described by ω= 1/3.

• Finally, dark energy seems to exert a repulsive force, that causes the universe to expand.
This is described by a state parameter ω = −1. This value can be constrained observa-
tionally by data extracted from Barionic Accustic Oscillations (BAO), perturbations of the
hot plasma of the early universe that imprinted in the Cosmic Microwave Background
(CMB). The most recent value (2018) is ωΛ =−1.028±0.031 [17].

Figure 2: Observed Cosmological parameters [17]. Ω is the normalised fraction between ρi and
ρcrit = 3H 2

0 /8πG4. It is the sum of the normalised densities
∑

i Ωi = 1 that gives the famous
distribution of the energy content of the universe: (Roughly) 70% of dark energy, 25% of dark
matter and 5% of ordinary matter and radiation.

5

https://www.esa.int/ESA_Multimedia/Images/2018/07/Planck_s_view_of_the_cosmic_microwave_background


Equipped with this information, we are one step closer to understanding the true power of
Friedmann’s equations (6, 7). But one step at a time, cosmic hitchhikers! If the universe is
evolving, so does the energy density of its contents and viceversa. This is governed by the con-
servation of energy. The explicit expression for the covariant derivative of the EM tensor (5) in a
FRLW geometry (1) gives a relation between the energy density ρi of any content and the scale
factor a(t ) of the form:

ρ∝ a−3(1+ω), (9)

One of the most interesting features of relation (9) is that ρΛ remains the same yesterday, today
and tomorrow. It is not diluted by the expansion of spacetime. This can be interpreted as an
intrinsic property of spacetime itself, which can be captured by an additional EM tensor of the
form:

TΛ =−ρΛgab =− Λ
κ4

gab , (10)

Where Λ is a constant of dimension [Length]−2. This is the famous cosmological constant
(CC),11 which encodes the information of a non-varying energy density throughout the ex-
panding cosmos. As this can be interpreted as an intrinsic geometrical property, it is perhaps
more appropiate to move it to the LHS of Einstein’s equation (4) as:

Rab − 1
2 gabR +Λgab = κ4Tab , (11)

which is the usual Einstein equation for cosmology. Now that we have fully identified all the
characters in this cosmic play, let us come back to the Friedmann equation (6). Taking into
account all possible types of energy densities ρi , we obtain the following expression:

ȧ2 = 8πG4

3

ρmat

a
+ ργ

a2 +ρΛ a2− 3k

8πG4︸ ︷︷ ︸
+ρc

 , (12)

where we have rewritten the curvature contribution in a more appropiate notation, i.e. ρc . A
simple look at expression (12) is enough to see that it can be written in a quite familiar conser-
vation equation as T +V = 0, where the potential V (a) corresponds to the RHS of (12), with the
opposite sign.

Figure 3: (Left) Qualitative behaviour of the effective potential in equation (12). Each part the
potential {A,B ,C } corresponds to different eras dominated by radiation, matter and dark en-
ergy respectively. (Right) Evolution of the energy density of radiation, non-relativistic matter
(dust) and dark energy as contents of the universe (logarithmic scales).

Our current observations suggest the fact that our universe has entered region C in figure 3
some years ago (about 4× 109 years ago). We can also see that the gradient of this potential

11The famous one that Albert introduced in his equation to obtain a static universe.
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in region C is negative, indicating an accelerated expansion of the universe, in agreement with
observations. It is also important to note the divergence of the potential V (a) when a → 0,
which causes a singularity at t = 0 (conventionally chosen [18]). What does this mean? From
a classical cosmology point of view, this corresponds to the Big bang. A singular state that
we cannot understand with the tools at hand, i.e general relativity and classical cosmology,
where all the contents of the universe were compressed into a single point at extremely high
temperatures [19]. This should already make us bat an eye. We are trying to apply a classical
framework to a system whose energy regime very well requires a quantum description of all
the forces involved. It should come as no surprise that we end up with singularities in our
description if we are using a sledgehammer to crack a nut.

But we cannot be so conformist. If we cannot understand through the lens of a theory such as
general relativity, this may indicate that our toolbox lacks some important tools.12 Before we
go to our favourite DYI (Do it yourself) store to buy these tools, we must first understand what
and how we want to fix our lack of understanding. This will be the main topic covered in the
next section 1.2.

1.2 Issues with theΛ-CDM Model

We talked about some limitations of the standard model of cosmology at the end of section 1.1.
In this section we will look at them in more detail. Let us start with two of its most well known
issues.

1.2.1 Horizon problem

To understand this fundamental problem which the standard model of cosmology cannot ex-
plain, we must first define what to be in contact is. There is nothing faster than light in the
universe [20]. This imposes an upper bound on the size of a region where two points could
have been in causal contact, i.e. information between the points could have travelled in a pe-
riod of time less or equal to the time it would take light to travel the distance separating them.
This region is called the light cone. Massless particles, as photons, follow null geodesic trajecto-

Figure 4: Light cone. Photons travel along world lines of zero proper time, ds2 = 0, called null
geodesics (both lines at 45 degrees). The set of all null geodesics passing through a given event
P in spacetime is called the light cone. The interior of the light cone is defined as the region of
spacetime causally related to that event P. Causally disconnected events (such as Q) are outside
the lightcone related to the event P.

ries, which imply ds2 = 0. Furthermore, as the universe is isotropic, only the radial coordinate
will be relevant for computations. Calculating in conformal time η, we can extract the following

12The most prominent absence is that of a quantum description of gravity.
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relationship from the light-like particle line invariant:

ds2 = a2(η)
[−dη2 +dχ2]= 0 −→χ(η) = η f −ηi =

∫ t f

ti

dt

a(t )
, (13)

where χ is a generic radial coordinate that accounts for all possible topologies [21]. When
ηi = 0, χ(η) represents the comoving particle horizon, which is the maximum distance light
can travel between time 0 and aby other time t . One can then further rewrite expression (13)
in terms of the comoving Hubble radius RH = (aH)−1, which is the radius of the observable
universe at a given time t . Then:

η f =
∫ t f

0

d t

a(t )
=

∫ a

0

d a

H a2 =
∫ a

0
d ln(a)

1

aH
. (14)

We would like to make contact with today’s data, so we can rewrite the Hubble radius at any
moment to today’s by massaging the first Friedmann equation (6) together with the energy
density evolution (9) to see that:

RH = RH0 a1/2(1+3ω). (15)

It is important to note here the dependence of the exponent, which depends on the state pa-
rameter ω. This leaves us with a dependence of η as:

η∝ a1/2(1+3ω), (16)

which means that the comoving horizon grows monotonically with time. This implies that
some of the scales that are entering our horizon today were outside the Causal contact horizon
in the past (The universe was dominated by radiation and matter, as can be seen in (3)). This
can be seen in the CMB. Its homogeneity suggests that the universe was highly homogeneous at
that time, but we have just seen that these homogenous regions could not have been in Causal
contact in the past. How is this possible? What key concept is missing from our interpretations?

1.2.2 Flatness problem

Imagine that you are doing your laundry. Normally, when you take your clothes out of the
washing machine, they are full of wrinkles. Sometimes they get even worse after they dry. Then,
you patiently iron them down to smooth the surface. Now, try to imagine the opposite case;
that your clothes were extremely smooth and flat when you took them out from the washing
machine and after ironing, they are still smooth, but not as nicely wrinkle-free as they were just
when you opened the washing machine door. Makes no sense, does it? Something similar is
whatour universe shows.

Let us rewrite the first Friedmann’s equation (6) as:(
Ω(a)−1 −1

)∑
ρi a2 =− 3k

8πG4
, (17)

where Ω(a) = ∑
ρ0i a−3(1+ω)/ρcrit, with ρcrit = 3H 2/(8πG4). Note that the RHS of the previous

expression is a constant quantity, 13 while the LHS evolves with time. The density ρ will de-
crease with time, counterbalanced by the increase in the scale factor a. As the universe was
dominated by radiation and matter in the past, this implies that the combination ρa2 has de-
creased with time. In order to keep the behaviour constant, this requires that Ω(a)−1 − 1 has
increased in the same way. This constrains the value of Ω(a) ≃ 1 further and further as we go
back in time. This points to an extreme fine-tuning of Ω(a) at early times, to deviations from
one of no more than O (10−16) during the nucleosinthesis period, for example. Any deviation
greater than such ridiculously small values would not have allowed the flat universe that we
observe today.

13In fact, 0, if we account thatΩk ≃ 0 as we saw in figure 2.
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1.2.3 The Hubble tension

The Hubble constant today H0, which is defined as the ratio between the speed and the dis-
tance of an object in space (H0 = v/d), can be measured in two different ways:

• You can find the speed of the object (usually a galaxy) by looking at its redshift. For the
distance, the most reliable way is to make use of standard candles; Type Ia supernovae
whose peak luminosity is the same, no matter where they are in the universe. Given the
relationship between relative and absolute magnitudes, it is possible to extract the dis-
tance to these objects with good accuracy. This method is used to study nearby celestial
objects, i.e. not looking back much into the past. The current value for H0 using this
method is H0 = 72.3±1.3 km s−1Mpc−1 [17].

• An alternative way of obtaining H0 from observations with our current technology is to
study the CMB, i.e. to look far into the past. Theoretical predictions for the CMB can be
obtained by tuning certain parameters in the Λ-CDM model, such as curvature, energy
densities, etc. These predictions can then be compared with the observations, to decide
which one is the best fit. The best fit so far yields a H0 value of 67.4±0.5kms−1Mpc−1 [22].

As we can see, there is an apparent tension between these two results which has been con-
firmed by technological development over the years.14 What could be the reason for obtaining
two different values for the expansion rate of the universe at two different eras? Several propos-
als have been discussed, without observational confirmation or agreement in the community
yet (see [23]). In any case, observations point to an existing difference that cannot (yet) be
explained by the standard model of cosmology.

1.2.4 The cosmological constant problem

We have previously talked about different observations of the Hubble constant using two dif-
ferent methods of measurement. However, this is not the only dichotomy that exists inΛ-CDM
model.

Let us quantise matter fields appearing in the Einstein-Hilbert action (2) as proposed by Wein-
berg [24]. At the end of the day, the remaining physical interactions (electromagnetism, weak
and strong nuclear forces) are quantised in the standard model of particle physics. Each of
these interactions, has a vacuum energy, corresponding to the minimum background energy
that space itself has. In the absence of curved spacetime, this vacuum energy can somehow
be ignored. But, this is not the case if we want to study any of these fields in the presence of
gravity. We know from the equivalence principle that gravity couples to all possible forms of
energy, including that of the vacuum.

The quantisation of matter fields will result in an additional constant energy density contri-
bution15 to the energy-momentum tensor Tab . As this term is constant and with the same
dimensionality as the cosmological constant (i.e. [Length]−2), we can add it to Λ to obtain an
effective cosmological constant as:

Λeff =Λ+κ4ρvac︸ ︷︷ ︸
Λvac

, (18)

which is in fact the cosmological constant that we are able to measure from observations. Let
us now identify each of its contributions numerically. According to [17], the effective value of

14It could be that our technological limitations were the reason for the difference, but as technology has devel-
oped, this difference has been confirmed with better and more reliable measurements.

15This additional contribution comes from the closed-loop Feynmann diagrams (i.e. quantum fluctuations
around the vacuum state) of each of the matter fields involved. We will not include a discussion of this compu-
tation in these notes, but we refer the reader to [25, 26] for further reading and details.

9



the cosmological constant is:
Λeff ∼ 3×10−122M 2

pl , (19)

while any first-order correction due to quantum fluctuations of the matter fields is:

Λvac ∼
M 2

Pl

16π2 ∼ 6.3×10−3M 2
Pl. (20)

This is a difference of about 10120 orders of magnitude (in Planck units), as often stated in the
literature. However, previous computations of the vacuum energy are slightly handwavy, be-
cause the renormalisation scheme does not respect Lorentz invariant. As noted in [25], an
accurate renormalisation will return a mismatch of 54 orders of magnitude instead of 120. In
both cases, this means that the bare cosmological constantΛ has to be extremely fine tuned to
cancel out in such an almost perfect way that the small effective one we can observe remains.
A recent discussion about this issue can be found in [27]. This last required coincidence is what
gives title to this section.

The first two previously discussed problems of theΛ-CDM model (i.e. the horizon and flatness
problems) may find possible solutions in the proposed inflation mechanism.16 However, there
is another underlying problem, which is problably related to all previously discussed problems,
and which was already pointed out by Lemaître in [19]; General Relativity is a classical and ef-
fective17 field theory of spacetime itself. This means that it cannot provide a description of
gravity in the short-range regime. There is a cut-off, an upper bound, the Planck length ℓPl at
which quantum effects, hence new degrees of freedom, will become important. In this regime,
the classical description of spacetime breaks down, pointing to the need for a more funda-
mental theory that is completed in the ultraviolet regime, i.e. a theory that is well defined at
arbitrary high energies and without free parameters. A theory of quantum gravity. At this point
the question arises:

How and where can one acquire such powerful tool as an UV-complete theory of gravity?

Perhaps it is time to leave the comfort of our cottage and explore the boundaries of our knowl-
edge, in search of a clue that will bring us closer to the desired fully consistent theory of quan-
tum gravity. It is well known that the best possible candidate we have so far is string theory.
However, to explore such a beautiful theory is not the scope of these notes. Instead, it could
be instructive to explore what the intricacies and subtleties of a quantised version of classical
four-dimensional cosmology are.

2 QUANTUM COSMOLOGY

The previous section was devoted to presenting the observable universe and its dynamics from
a classical perspective. General relativity seemed to work like a charm in the usual regimes
where the Λ-CDM can be applied. However, we have also seen in section 1.2 that it has its
flaws. Without delving into too much detail, some of these issues can be solved assuming that
the universe underwent a period of exponential expansion called inflation inmediately after
the Big Bang [28,30–34]. Althought this proposal elegantly solves some of theΛ-CDM problems
such as the horizon or flatness problem, it raises new complicated questions hard to answer.

16This mechanism proposes that the universe went through a de Sitter phase (i.e. a phase in which dark energy
dominates the dynamics, giving rise to an exponential behaviour of the scale factor a ∼ eH t ) moments after the Big
Bang. As these notes will be mainly oriented towards the understanding of late-time cosmologies, we will not touch
much on the concept of inflation. However, we leave some references here for the curious reader [21, 28–30].

17An effective field theory is one that provides simple a description of phenomena when applied at the right scale.
It includes the appropriate number of degrees of freedom to describe physical phenomena occurring at a chosen
length scale or energy scale, and ignores substructure and degrees of freedom that may occur at shorter distances.
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For example, one may wonder what the initial conditions for any fields controlling such expo-
nential enlargement were. This will undoubtedly lead us towards the fine tuning problem [35].
Moreover, it is still necessary to find reliable observational evidence which can prove that such
process took place at the beginning [36, 37].

But there is an even more fundamental problem lying behind that of initial conditions. As
Lemaître already pointed out in 1933 [12] and discussed in section 1, the effective potential
divergence in Eq. (12) when a → 0 signals a breakdown of our classical understanding of cos-
mology. The primeval atom proposed by the priest in [7] could be defined as a metastable and
quantum state where the notion of spacetime ceases to exist. The key word to put the focus on
here is quantum.

One of the main priorities of the physics community has been to find a formalism to describe all
the fundamental interactions within the same framework. While electromagnetism and both
the strong and weak nuclear forces can be studied within the framework of the standard model
of particle physics [38, 39], gravity remains as a troublemaker to our wishes, unleashing in-
finities that cannot be tamed. The unified description of the three forces mentioned above
can work out in energetic regimes where gravity is not strong enough to affect their interac-
tions. However, this was not what the weather looked like at the very beginning of the universe
(∼ 1030 K ). In this regime, the Compton wavelength of a particle is more or less equal to its
gravitational (Schwarzschild) radius. Hence, any quantum fluctuation would "blur" the classi-
cal concept of spacetime, pointing to a breakdown of the classical description of gravity.

Although the dream is to achieve a consistent theory of quantum gravity, the rentless efforts of
the physics community have not yet provided the desired result. String theory [40–42] seems
the best candidate we have for this title. However, these notes are oriented toward a more fa-
miliar four-dimensional approach to the cosmos. In this section, we will take a more modest
approach than looking at string theory. Instead of quantising a non-perturbative renormal-
isable theory as gravity, we will try to describe the whole state of the universe with a semi-
classical description, via the canonical quantisation of General Relativity. The premise is that
this semi-classical approximation should coincide with the semi-classical low-energy descrip-
tion of the yet-to-be found theory of quantum gravity. This is the main aim of Quantum Cos-
mology [43, 44].

The idea is somehow simple: One takes one’s favorite universe, described by the rules of Gen-
eral Relativity and proceeds to quantise canonically by following the Dirac’s method [45] as if
it was an usual quantum mechanics system. This implies identifying what the canonical vari-
ables are and to introduce a quantum wavefunction ψ (i.e. a quantum state |ψ〉 living in a
Hilbert space) to represent the state of the universe. When the canonical variables and their
conjugated counterparts have been promoted to operators, an Schrödinger-like equation can
be defined to describe the evolution of the state of the universe. Finally, one would need to
solve for the specific quantum state |ψ〉 that solves the aforamentioned equation. This requires
us to provide the right set of boundary conditions. An interesting question to ask here would
be: What is the right choice of boundary conditions? How can we define a "boundary" for the
quantum system to be studied if we have never left it? We will see in this section that this still
remains as a source of debate.

In this section we will not provide a complete review of the current state of quantum cosmol-
ogy, but we will introduce the basic notions and framework that will be latter discussed (from
a higher dimensional point of view) in this thesis. We will start with a discussion of the quanti-
sation procedure for the most general four-dimensional cosmological configuration in subsec-
tion 2.1. We will then realise that the amount of information to be handled is overwhelming,
which will require us to drastically reduce the number of variables controlling the system. A
simple, yet powerful toy model will be considered in subsection 2.2, where we will also discuss
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about the physical implications of the most well-known boundary condition proposals.

2.1 Wheeler-DeWitt equation and superspace

Before we start with the contents of this section, we would like to invite our dear reader to enjoy
the hypersurface discussion in these notes, so that the lecture of these will be a more pleasant
experience after having acquired some familiarity with the to be used geometrical notation.

Let us start by choosing a Lorentzian manifold M that accepts a global time coordinate. This
type of manifold always accepts time-orientability, which allows us to simplify the computa-
tion by decomposing the spacetime components. This will consist in separating the space
slices from the global time coordinate t . Each spacelike hypersurface of constant time t will
be denoted by Σt . This is is the ADM formalism, named after Arnowitt, Deser and Misner [46].

The set of coordinates used to describe the decomposition foliation is given by:

xa = (t , xi ), (21)

and the most general expression of the metric on the manifold M in these coordinates is:

ds2 = gabdxadxb

=−
(
N 2 −Ni N i

)
dt 2 +2Ni dxi dt +γi j (t , x)dxi dx j ,

(22)

where N ≡ N (t ) represents the lapse function, as discussed in section 1. The function Ni is
called the shift function, and measures the path difference between the same point p on the
hypersurface Σt at different "slices" of time t . When Ni = 0, one recovers the usual descrip-
tion in comoving spatial coordinates. We will see that these two functions will play the role of
constraints when we study the dynamics of the system. The metric hi j represents the spatial
sections of the four-dimensional geometry, i.e. the metric induced on them.

The dynamics of these slices will be controlled by the classical Einstein-Hilbert action (2) en-
hanced by the Gibbons-Hawking-York boundary term [47,48]. This extra piece accounts for any
extrinsic contribution, i.e. how the the Σt slices is embedded in the whole four-dimensional
space. The total action is given by:

S[g ,h,Φ] = 1

2κ4

∫
M

d4x
√|g |((4)R −2Λ4

)+ ϵ

κ4

∫
∂M

d3x
√

|h|K +Sm[Φ], (23)

where |h| = dethab the determinant of the induced metric on the boundary ∂M . ϵ represents
the norm of the normal vector na and K is the trace of the extrinsic curvature (see this). Finally,
any matter fields are encoded in the action term Sm[Φ] = Sm[φ0, · · ·φn]. This four-dimensional
action can be broken down into its 3+ 1 slice decomposition. One can decompose the Ricci
tensor using this and write:

S[h,Φ] =
∫

dL = 1

2κ4

∫
M

dt d3x
√
|h|N

(
(3)R −Ki j K i j −K 2 −2Λ

)
+Sm[Φ], (24)

with the extrinsic curvature explicitely given by:

Ki j = 1

2N

(
∂t hi j +∇i N j −∇ j Ni

)
. (25)

Although it may seem appealing to compute the equations of motion directly from the action
(24), it will be more illustrative to perform a Legendre transformation to the Lagrangian and
obtain the Hamiltonian, as proposed by the ADM formalism. This requires us to identify the
canonical coordinates18 in the system: {hi j , N , Ni ,Φ}. Hence, the canonical momenta can be

18Note that the choice of canonical variables is not unique. Different choices will lead to different quantum theo-
ries upon quantisation. Here we will stick to the ADM choice [46].
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computed in the standard way [49]:

πi j = δL

δḣi j
=−

√
|h|

2κ4

(
Ki j −hi j K

)
, πi = δL

∂Ṅi
= 0,

πφn =
δL

δφ̇n
=

√
|h|

N

(
φ̇n −N i∂iφn

)
, πN = δL

∂Ṅ
= 0.

(26)

Note that the conjugated momenta associated to the lapse N and shift Ni functions are zero.
This implies that we are dealing with Dirac’s primary constraints [50]. Perhaps our reader has
never heard of such constraints. Let us rephrase them in a more "peasant" language. To do this,
we then write the Hamiltonian as:

S =
∫

dt d3x
(
πN Ṅ +πi Ṅi −NH −Ni H

i
)

, (27)

where Hm represents the Hamiltonian piece for the matter fields φi and

H = 2κ4Gi j klπ
i jπkl −

p
h

2κ4

((3)R −2Λ4
)+Hm ,

H i =−2∇ jπi j +∂i Hm .

(28)

Note that the derivatives of Eq. (27) with respect to the lapse N and shift Ni act as Lagrange
multipliers, which will result in severe constraints as:

H i = 0, H = 0. (29)

From now on, we will refer to H as The Hamiltonian. This Hamiltonian will govern the evolu-
tion of the state of the universe along the space of configurations it can have. In order to have
a good notion of distances and the geometry of such territory, we will define Gi j kl . This object
receives the name of DeWitt metric [51] and it is formulated as

Gi j kl =
1

2
h−1/2 (

hi k h j l +hi l h j k −hi j hkl
)

, (30)

which characterises the geometry of the superspace. Formally, one can define this space by:

S(Σ) ≡ {
hi j (x),φ(x) | x ∈Σ}

/Diff0(Σ). (31)

As mentioned above, the superspace contains all possible different metrics hi j and matter field
configurations that the universe can have. It is infinitely dimensional, with a finite number of
coordinates {hi j (x),Φ(x)} at each point x of the three-dimensional surface Σ.

As we know from our quantum mechanics course, the quantum state of a system is represented
by the wave function ψ associated to it [52]. This object is a functional ψ[hi j ,Φ] of the super-
space, which provides the amplitude to find a particular hypersurface Σt of the universe with a
given three-dimensional metric hi j and matter field configuration Φ. Note the absence of any
explicit time dependence. This should not be a cause of concern; At the end of the day, we are
aiming to quantise general relativity, so there is an implicit time dependence in the spatial hi j

information.

Let us now quantise the system. According to Dirac’s quantisation procedure [53], substituting
the canonical momenta (26) by operators19

πi j =−i
δ

δhi j
, πn =−i

δ

δφn
, (32)

19Note that we have neither πi nor πN . This is because the to-be operator version of the constraints should act
like them, which is the case of the lapse and shift functions. This implies that the wavefunctionψ is independent of
them.
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which yields the following equations for ψ:

H iψ=Hψ= 0. (33)

The first constraint forces the wavefunction ψ to be invariant under any three-dimensional
diffeomorphisms. This will not be of much relevance in this work, as we will restrict ourselves
to comoving frame (So Ni = 0). For the second constraint we especifically have:[

2κ4Gi j kl
δ

δhi j

δ

δhkl
+

p
h

2κ4

((3)R −2Λ
)−Hm

]
ψ= 0. (34)

This equation is known as the Wheeler-De Witt equation [51] and it will be the main object of
study in quantum cosmology. It describes the dynamical evolution of the wavefunction of the
universe, hence its state. It also ensures the explicit time independence of the "timeless" wave-
function ψ. This equation can then be thought of a zero-energy analogue of the Schrödinger
equation [54] due to its similarities. At the end of the day, it describes the temporal evolution
of a quantum system.

We would not like to finish this section of the section without commenting on one of the most
studied and reliable forms of solving Schrödinger-like equations in quantum mechanics: The
path integral [38,55]. This object provides the probability amplitude for a system (i.e. a particle
or a universe) to move between two different states within a give time interval. The trajectory
it will follow will not be deterministic, as the uncertainty principle will limit our precision in
calculating pairs of physical quantities [56]. In this case, we are required then to sum over all
possible configurations that interpolate between the final and initial states of study. Morever,
as our object of study is a gravitational system with potential topological changes,20 this would
require us to account for them along the path. This can be cast as:

Z =
〈

h(f)
i j , φf ; Σf

∣∣∣h(i)
i j , φi ; Σi

〉
=∑

m

∫
DgDφe i S[g ,φ], (35)

where the sum
∑

m takes into account all possible topologies that the four-dimensional ge-
ometry can have. The integration is performed over all possible gab and φi configurations,
represented by {Dg ,Dφ}. The action S[g ,φ] is that described in Eq. (23). Note that this would
imply a strongly oscillating integrand which could suffer from convergence issues when inte-
grating. One might, in principle, think that an analytic continuation to the Euclidean descrip-
tion (i.e. r = i t ) would tame such a problem. Nothing further from reality. Divergences will
continue appearing due to the non-renormalisable nature of gravity [57–59]. Furthermore, the
non-perturbative aspect of this force will lead to an unbounded from below action (23) [60,61].

All in all, despite the difficulties, the path integral of gravity has been proved to be an extremely
useful tool in the semi-classical (i.e. the quantum cosmology) approximation. In this regime,
the path integral is a weighted sum over all solutions that extremise the action (23). This ease
the computation, and allows us to define the wavefunction ψ describing the state of the uni-
verse as:

ψ[hi j ,φ ; Σ] =
∫

Dg Dφe i S[g ,φ]. (36)

This general wavefunction ψ satisfies the Wheeler-DeWitt equation (34). However,there is a
subtle catch here; the path integral formalism does not provide a specific initial configuration
state |hi j ,φ;Σ〉. This brings us back to the initial condition issue discussed at the beginning of
this section. We have solved for the most general solution of the wavefunction (36) and in order
to select the specific wave that describes the evolution of the universe, we need to impose a set
of boundary conditions on the countour of integration. From the persepective of a quantum

20Recall that we consider all possible intermediate states.
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mechanics course, this is easy. You are given a potential with some boundary conditions, im-
pose them and pick out the solution. As an external observer of the system, you have an idea of
the "shape" of the studied system.21 Nevertheless, within the framework of quantum cosmol-
ogy, where the observer is part of the system, the choice of boundary conditions to be imposed
is not so clear. Ideally, such a choice should be provided by the physics of the system. However,
from a four-dimensional quantum cosmology point of view proposals and debates about the
choice of boundary conditions are all we have to work with.

Before embarking ourselves on the study of the two most common proposals for the aforamen-
tioned discussion, let us first drastically reduce the number of degrees of freedom and limit
ourselves to a reduced set of them to have a concrete description of a simple wavefunction de-
scribing the evolution of the universe. Then, we will be able to easily impose the two different
boundary choices and delve into their physical implications.

2.2 Minisuperspace of quantum cosmology

Let us start by simplifying our superspace. Its infinite dimensionality does not help with com-
putations. So the best way to proceed is to do what physicists do best; to approximate the
system with a toy model. In this case, we will restrict our attention to just a few individual vari-
ables of the superspace and freeze any other degrees of freedom. The resulting configuration of
the superspace is called minisuperspace.22 This simplification will allow us to have a tractable
set of degrees of freedom, which will facilitate any explicit computation.

The toy model that we have proposed considers the quantisation of an empty four-dimensional
universe, with closed spatial section and a positive cosmological constant Λ4. As we saw in
section 1, this can be described by a Friedmann-Robertson-Leimatre-Walker metric (1) with
k = 1. As our aim is to obtain the dynamics controlling its evolution, we need to substitute Eq.
(1) in the action (23) to obtain the Lagrangian:

S = VolS3

κ4

∫
dt N

(
−3aȧ2

N 2 +3a −Λ4a3
)

, (37)

where VolS3 = 2π2 appears after integrating over the closed spatial directions x = {α,β,γ}. Note
that the only dynamical variable present in the previous action is the scale factor a. This implies
that we have reduced the minisuperspace to only one dimension. The canonical coordinates
of the Lagrangian (37) are then given by (a,πa), where πa is the conjugated momentum as

πa = δL

δȧ
=−6VolS3

κ4 N
aȧ. (38)

The corresponding Legendre transformation will yield The classical Hamiltonian for this toy
model, which is:

H =− κ4

VolS3

π2
a

12 a
+ VolS3

κ4
a

(
Λ4 a2 −3

)
. (39)

If we now quantise the system as described in section 2.1, we need to replace the conjugated
momentum πa by −i∂a and The Hamiltonian constraint H = 0 by the Wheeler-DeWitt equa-
tion (34). Simplifying and rearranging terms so that the above equation resembles that of
Schrödinger with an effective potential V (a), we get:−1

2

∂2

∂a2 +
Vol2

S3

κ2
4

(
6 a2 (

3−Λ4 a2))︸ ︷︷ ︸
V (a)

ψ4D = 0. (40)

21Another way of thinking about this is to try to explain the concept of phase transition from gas to liquid, but
when the only conceptual physical understanding available is that of the liquid phase.

22No, physicists are not the best at naming things.
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Note that the effective potential in figure 5 has two roots at a0 = 0 and a∗ = 3/
p
Λ4. Returning

to the Schrödinger equation analogy, we can think of our cosmos system as being driven by the
effective potential V (a), which has two clear regions separated by the turning point a∗ when
Λ4 > 0. These would be called quantum region when V (a) > 0 and the classical region when
V (a) < 0.

Given the "tameness" of the potential V (a) in the Wheeler-DeWitt equation (40), the wavefunc-
tion solution can be found using the semi-classical Wentzel-Kramers-Brillouin (WKB) approx-
imation [54]. For simplicity of notation, let us define:

S(a f , ai ) = VolS3

κ4

∫ a f

ai

da′√2|V (a′)|, (41)

which is the argument of the exponents in the wavefunction solution:

ψ(a) = 1

|V (a)|1/4

{
A eS(a,0) +Be−S(a,0) if a < a∗,

C e i S(a,a∗) +De−i S(a,a∗), if a > a∗.
(42)

The pairs {A ,B} and {C ,D} ∈C and can be related by the WKB formulas as:A = 1
2 e−S(a,0)

(
C e i π4 +De−i π4

)
B = eS(a,0)

(
C e−i π4 +De i π4

) {
C = 1

2Be−S0+i π4 +A eS0−i π4

D = 1
2Be−S0−i π4 +A eS0+i π4

(43)

Note that the wavefunction Eq. (42) and its undetermined coefficients {A ,B,C ,D} clearly
point to those infinitely many possible solutions to the Wheeler-DeWitt Eq. (40). Here we will
use the two most common boundary condition proposals introduced in section 2.1.

Figure 5: Plot of the potential controlling the dynamics of the wavefunction describing the
evolution of the universe. The real parts of the Vilenkin and Hartle-Hawking wavefunctions
are also shown. Region I corresponds to the quantum or Euclidean region, while Region II
represents the classical part of the potential.

2.2.1 No-boundary proposal

This proposal, argued by Hartle and Hawking [62, 63], suggests that the Euclidean version of
the wavefunction (36) should be restricted to the integration on compact four-dimensional
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Euclidean manifolds. This implies that the slice Σ where ψ is defined is the only boundary to
the system. From a more physical perspective, this can be translated into the claim that the
universe had no singular boundary in the past. Hence the name of the proposal.

The interpretation of the no-boundary wavefunction is that the geometry arises from nothing.
Translated this to the initial condition problem this would lead to conditions on hi j (x) andφ(x)
and its derivatives in the imaginary time component. The full discussion of how to fix these
restrictions can be found in [44]. This implies a choice of the coefficients for region I to be such
that only the increasing exponential part of the wave exists, i.e. (A ,B) = (1,0). Making use
of the relations (43) one can also obtain the parametrical dependence in region II. The entire
wavefunction (42) under the no-boundary condition proposal reads:

ψHH(a) = 1

|V (a)|1/4

{
eS(a,0) Region I

2eS(a∗,0) cos
(
S(a, a∗)− π

4

)
Region II

. (44)

2.2.2 Tunneling proposal

The second well-known boundary proposal is that of Vilenkin [64–66]. This proposal requires
the wavefunction ψ to be everywhere bounded, and at singular boundaries of superspace, ψ
includes only outgoing modes. This can be thought of as a analogy to quantum tunneling in
quantum mechanics. The boundary condition imposed there is an statement about outgoing
modes at∞. From a more physical point of view, the idea behind this proposal is that any possi-
ble state described by ψ should not include universe’s states contracting down from an infinite
size, i.e. only expanding states from "nothing". Given the simplicity of the minisuperspace and
behaviour of the wavefunction solution in the classical region, is easy to see that (C ,D) = (0,1).
Using relations (43), and imposing A ∼ 0, as it is exponentially supressed, we find:

ψV(a) ≈ 1

|V (R)|1/4

{
eS(a∗,0)e−S(a,0)+i π4 Region I

e−i S(a,a∗) Region II
, (45)

The explicit form of both the Hartle-Hawking and Vilenkin wavefunction expressions (44) and
(45) allow us to extract what the nucleation probability of a universe with a cosmological con-
stantΛ4 is. This is no more than the amplitude of the wave under the quantum region as:

PH H ∝ exp

(
+ 24π2

κ4Λ4

)
, PV ∝ exp

(
− 24π2

κ4Λ4

)
. (46)

Note how the Hartle-Hawking probability favours the nucleation of universes with small pos-
itive cosmological constant Λ4, while the opposite is true for the Vilenkin case. However, the
question remains; what is the best set of boundary conditions to describe the beginning of
our cosmos? Recent developments and claims [67] and counterclaims [68] have been made in
the last years, making progress and shedding light on this long-standing problem. However,
it could be that this is not enough. It could be that UV-complete theories, like string theory,
may have the last word in the apparent choice of boundary conditions that the approach of
quantum cosmology may have. And this would very well require another set of notes in their
own.
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