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1 HYPERSURFACES

The aim of these notes is to provide the reader with a quick overview of the wonderful world of
hypersurfaces, i.e. submanifolds with dimension dim = D−d that are "slices" of D-dimensional
manifolds. These notes will follow along the lines of [1] and [2].

The hypersurface’s mathematical definition can be cast in the following form:

S = {xα ∈M |Φ(xα) = 0} ⊂M . (1)

Perhaps mathematical definitions bring our dear reader out in a rash, so let us ease the previ-
ous description into more "peasant" language. In addition, as we also care about our reader’s
sanity, we will restrict this study to co-dimension one hypersurfaces. This is d = 1. More valiant
mathematical warriors, willing to fight through co-dimension d sub-manifolds, are welcome to
read the exquisite selected literature on the topic [3–5].

As we said, we define a hypersurface Σ as a "slice" of a higher dimensional space with metric
gµν. This is something that it is well known since our good old days in high school. For example,
one can define a two dimensional sphere in a three-dimensional flat Euclidean space by

Φ(x, y, z) = x2 + y2 + z2 −R2 = 0, (2)

with R as its radius. The embedding map Φ tells us how to "insert" the hypersurface Σ (the
sphere) in the manifold M , i.e. the three-dimensional Euclidean space. Observe that this de-
scription of the sphere respects the definition given in expression (1). Its coordinates {x, y, z}
are contained in M , the three dimensional Euclidean space and Eq. (2) corresponds to the
restriction in the second part of the definition. Eventuality, one can further choose a new set
of coordinates that are intrinsic to the sphere itself, as y a = {φ,θ}, such that we can relate the
extrinsic coordinates {x, y, z} to those of the sphere by the well-known parametrical relations:

x = R cosφsinθ,

y = R sinφsinθ,

z = R cosθ.

(3)
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This parametric equation can be written in a more general way as:

xα = xα(y a). (4)

The following notation is extremely important; please engrave this on your pupils:

• Extrinsic coordinates will be denoted by Greek letters {α,β,γ, · · · }.

• Intrinsic coordinates will be denoted by Latin letters {a,b,c, · · · }.

To have this notation crystal clear is of extreme importance, as the aim of these notes is to relate
extrinsic and intrinsic properties of manifolds one another, so we can get the most information
of both coordinate systems. The preceding notation will help us clarify if we are dealing with
the total manifold or just the hypersurface Σ.

Returning to our simple spherical example, let us continue with more definitions. As a surface,
it can be equipped with vectors. The ones of our interest are two different types: The normal
and tangent vectors.

Figure 1: Two of the most basic elements to describe the embedding of a co-dimension one
hypersurface Σ in a D-dimensional manifold are the normal vector nµ and the tangent vectors
eαa .

1.1 Normal vector

It is easy to think of a normal vector nα in the spherical case described above: A stingy arrow
pointing orthogonally (outside or inside) respect to the surface Σ. The problem comes when
one deals with dimensions greater than three or signatures beyond the Euclidean one. How
does one define the normal vector?

We can define a unit normal unit vector nα imposing unitarity:

nαnα = ε=±1, (5)
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where (+) correspond to a timelike hypersurface and (−) represents spacelike ones.1 Furhter-
more, we demand that nα points in the direction of increasingΦ. In the case we face a spacelike
surface, the normal vector will point in the direction of growing spatial sections, i.e. nα∂αΦ> 0.
This implies that the normal vector can be defined as:

nα = ε∂αΦ√
gµν∂µΦ∂νΦ

. (6)

Observe that for the two-dimensional sphere described above, as the metric gµν = I3×3, one
recovers its usual euclidean definition.

1.2 Tangent vectors

Contrary to normal vectors, tangent ones live on the hypersurface. They are defined by:

eαa = ∂xα

∂y a , (7)

where again, xα coordinates belong to the manifold M and y a are coordinates of Σ, related
through the parametric relation (4). Note that eαa will be a matrix, i.e. the Jacobian of the para-
metric transformation, with D rows and D −1 columns, as we are dealing with co-dimension
one hypersurfaces.

As expected, tangent and normal vectors are orthogonal to each other, which means its scalar
product is null,

nαeαa = 0. (8)

Furthermore, tangents vectors, acting as "projectors" of D-dimensional coordinates xα onto
the hypersurface Σ, can be used to described the intrinsic or induced line invariant on the sur-
face. This is done by restricting the line element of the D-dimensional space to displacements
confined to Σ, as:

d sΣ = gαβdxαdxβ
∣∣∣
Σ

= gαβ

(
∂xα

∂y a dy a
)(
∂xβ

∂yb
dyb

)
= gαβ

∂xα

∂y a
∂xβ

∂yb︸ ︷︷ ︸
hab

dy adyb ,

(9)

where hab is the induced metric or first fundamental form. This will allow us to define the
following completeness relation for the metric gαβ as:

gαβ = εnαnβ+habeαa eβb . (10)

This previous expression will be of great use in the following pages, as it relates the tangential
and normal parts of the embedding to the line invariant hosting the hypersurface.

Let us now imagine a full tangential tensor Aαβ defined on Σ, with no components in the nor-
mal directions (i.e. Aαβnα = 0). Such tensor admits the decomposition

Aαβ··· = Aab···eαa eβb · · · = hai hb j · · · Ai j ···eαa eβb · · · (11)

To understand how these tensors differenciate, we can just apply the usual covariant derivative.
However, the resulting information will depend on the chosen set of coordinates. In the case
one chooses the hypersurface coordinates y a , it is easy to prove that:

∇b Aa =∇βAαeαa eβb = ·· · = ∂b Aa −Γi
ab Ai , (12)

1Null hypersurfaces are trickier. Check [1] for further details.
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where · · · represent intermediate steps of the computation. The expression (12) corresponds to
the familiar intrinsic covariant differentiation. But this is not the end of the story. We can re-
produce the same computation, but splitting components of the metric gαβ into its normal and

tangential pieces. For indices convenience, let us look at the vector ∇βAαeβb , whose tangential
components are given by Eq. (12). This is:

∇βAαeβb = gαγ∇βAγeβb

=
(
εnαnγ+hi j e i

αe j
γ

)
∇βAγeβb

= ε
(
nγ∇βAγeβb

)
nα+hi j

(
∇βAγe j

γeβb

)
︸ ︷︷ ︸

∇b A j

e i
α,

(13)

Observe that the first term can be rewritten making use of the fact that Aγnγ = 0, as we assume
the tensor Aα to be completely tangential. This allows us to rewrite previous expression as:

· · · = ∇b Ai e i
α−εAi

(
∇βnγeγi eβb

)
︸ ︷︷ ︸

Kbi

nα, (14)

where we have defined the symmetric extrinsic curvature of the hypersurface Σ or second fun-
damental form of the hypersurface as:

Kab =∇βnαeαa eβb . (15)

with trace computed after contraction against the induced metric hab

K = K ab hab =∇αnα. (16)

Note that the starting point in Eqs. (12) and (13) is the same; The covariant derivative of the
tangent form Aα living on Σ. Eq. (14) shows a pure tangential piece of the vector field (the first
term) and its normal component (the second term). This piece carries geometrical information
about how the hypersurface Σ is embedded within the hosting space M and hence, what kind
of curvature acquires. This term can only be zero if and only if the extrinsic curvature vanishes.

2 GAUSS-CODAZZI EQUATIONS

The next logical step in this discussion is to explore if the intrinsic Riemann tensor of the hy-
persurface Σ can also be expressed in terms of extrinsic information. Let us first recall the
definition of a purely intrinsic curvature tensor as:

[∇a ,∇b] Ac = Rc
dba Ad . (17)

In the same spirit as in previous computations, one can make good use of the identities relating
normal and tangent tensors in order to related both extrinsic and intrinsic curvature tensors.
This requires a modest amount of algebra and we refer the curious reader to [1]. Here we will
just show the final result of the computation,

Rαβγδeαa eβb eγc eδd = Rabcd +ε (Kad Kbc −Kac Kbd ) ,

Rµαβγeαa eβb eγc nµ =∇c Kab −∇c Kac .
(18)

These are known as the Gauss-Codazzi equations. They show that some components of cur-
vature tensor of any geometry in M can be decomposed in terms of the intrinsic and extrinsic
curvature pieces of the hypersurface it may be hosting.
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Although the Riemann tensor, in any of its forms, contains valuable information about the ge-
ometry it represents, more handable tensorial objects will be found in everyday’s physic com-
putations. Let us then find expressions for both the Ricci tensor and scalar given the metric
decomposition described in Eq. (10). For the Ricci tensor we find:

Rαβ = gµνRµανβ

= (
εnµnv +hmneµmev

n

)
Rµανβ

= εRµανβnµnv +hmnRµανβeµmev
n ,

(19)

while the Ricci scalar gives:

R = gαβRαβ

=
(
εnαnβ+habeαa eβb

)(
εRµανβnµnν+hmnRµανβeµmeνn

)
= 2εhabRµανβnµeαa nνeβb +habhmnRµανβeµmeαa eνneβb .

(20)

It can be useful to make good use of relations (15) and (17) to further simplify the Ricci scalar
expression (20). Some minutes of patience and algebra yield:

R = (D−1)R +ε
(
K 2 −K abKab

)
+2ε∇α

(
nβ∇βnα−nα∇βnβ

)
. (21)

This expression can be interpreted as the evaluation of the D-dimensional Ricci scalar on the
D−1-dimensional hypersurfaceΣ. This result is exceptionally practical in the context of branes
and hypersurfaces, specially when the action governing their dynamics requires to be split.

3 JUNCTION CONDITIONS

Previous pages have been devoted to study how the embedding of a co-dimension one hyper-
surface Σ can be used to provide a splitting of the hosting manifold M into its tangential and
normal components. However, physical concepts of such picture has not yet received our at-
tention. For example, one can find situations in physics as follows: Assume that such hypersur-
face Σ separates a spacetime geometry in two regions V + and V −. Both regions are equipped
with different metrics g±

αβ
. Additionally, they are both solutions to the Einstein field equations.

What conditions should be put on the metrics to ensure that both spaces join smoothly at Σ,
such that the whole union of spaces becomes a solution to the Einstein equation? This set of re-
quirements demanded on the geometrical features of the spaces M± and Σ are called Junction
conditions. They were originally discussed in papers like [6–8].

Let us first imagine two D-dimensional manifold M±, described by different sets of coordinates
{xα±} and equipped with metrics g±

αβ
. Furthermore, both spaces share a boundary ∂M , which is

a co-dimension one hypersurface Σ described with a set of coordinates {y a}. On top of all this,
we assume that this composition space satifies the D-dimensional Einstein equation. We can
then try to define a general metric gαβ that interpolates between two D-dimensional spaces.
This can be written as:

gαβ =Θ(λ)g+
αβ+Θ(−λ)g−

αβ, (22)

where Θ(±λ) is the Heaviside distribution function and λ is an affine parameter describing
geodesics that connect both regions, piercing through the hypersurface Σ. In that sense, when
λ > 0, one could say to be placed in M+. Similarly, the minus sign represents a point of the
geodesic in M− and its null value sits on the hypersurface Σ. Observe that more complicated
objects like the affine connection Γ or the Riemann tensor will depend on derivatives of the
metric. One then has to be careful, as we are dealing with distribution functions and combi-
nations of them may result in non-distribution terms, giving us a hard time finding a physical
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Figure 2: Pictorical representation of the composite space of study: Two different regions V −

and V +, with Σ as a common boundary to them. Note the choice of orientation of the normal
vectors n±

µ . This will be relevant in further computations.

interpretation. In fact, one finds themself in such situation by just deriving expression (22)
respect to any coordinate xγ. This yields:

∂γgαβ =Θ(λ)∂γg+
αβ+Θ(−λ)∂γg−

αβ+εδ(λ)nγ
[

g+
αβ− g−

αβ

]
, (23)

where the last term comes from the derivative ∂λΘ(λ) = δ(λ).2 Observe that this term will yield
contributions of the formΘ(±λ)δ(±λ) when computing the Christoffel symbols. But such com-
bination of distributions is not one!3 Therefore, this requires to get rid of such term. In order to
be succesful in this task, let us impose continuity of the metric accross the hypersurface Σ,

g+
αβ = g−

αβ. (24)

This restriction can be polished further: Completness relation (10) allows us to split between
tangential and normal components of the continuity relation. Here we note that [nα]+− = n+−
n− = 0.4 Furthermore, coordinates {y a} are the same on both sides of the hypersurface Σ. This
implies that tangent vectors are uniquely defined on it. With these two facts, one can rewrite
Eq. (24) as:

h+
ab = h−

ab . (25)

This is called the first junction condition, which constrains the induced metric hab to be the
same on both sides of Σ. This is an essential requirement to have a well-defined geometry.

The derivation of the second junction can be done in different fashions, with the precedent
mathematical approach requiring us to continue elaborating along the lines discussed above.5

While this approach can be formal and elegant, we would be in need of introducing new con-
cepts and convoluted computations. Inspired by [2], a more physical approach will be pre-
sented in this section of the notes.

We will first try to understand the geometry of one portion of the composition space presented
above; A single manifold M and its boundary ∂M equipped with metrics gµν and hab , respec-
tively. The action describing the geometry and contents of this space can be given as:

STotal = SM +S∂M +SLΣ
, (26)

2The required change of variables in the derivative follows the fact that any displacement away from the hyper-
surface along one of the geodesics described above is given as dxα = nαdλ.

3Note thatΘ(0) = indeterminate, while δ(0) = 1. What is that?
4This requirement follows from footnote 16 plus the continuity of λ and xα accross the hypersurface.
5These lines can be found in [1].
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where SM is the usual Einstein-Hilbert action as:

SM =
∫
M

dD x
√|g |

(
1

2κD

(D)R +LM

)
, (27)

with (D)R the D-dimensional Ricci scalar and LM the Lagrangian density for any type of matter
content in such space.

The action term S∂M in Eq. (26) is the Gibbons-Hawking-York term [REF] and is required for the
variational principle to be properly defined since the Ricci scalar R is constructed from second
derivatives of the metric. It describes how the submanifold is embedded as a boundary of M .
Hence, it can be expressed in terms of the extrinsic geometrical pieces as:

S∂M = ε
κD

∫
∂M

dD−1 y
√

|h|K , (28)

with the induced metric hab and the trace of the extrinsic curvature Kab as described in (9) and
(15). Note the presence of the chosen normalisation ε of the normal vector nα. Finally, the term
SLΣ

represents any type of matter content living on the boundary.

But this discussion is so far only valid for one manifold with its boundary. As described above,
we are going to usually face situations where we find that the hypersurface Σ is the boundary of
two different manifolds M±. Hence, we have to "duplicate" previous action (26) and glue them
together, along the boundary ∂M mediating between M− and M+. This will be assumed as
the only boundary present in the construction.

Let us now derive the junctions condition by applying the variational principle respect to gµν.
In order to simplify this task and present results in the tidiest way, we will perform this compu-
tation piece by piece in the action. For each manifold M± we find:

δSM± = 1
2κD

∫
M±

dD x
√|g |

[(
G±
µν−κD T ±

µν

)
δgµν

+∇µ
(
gαβ∇µδgαβ−∇αδgαµ

)]
,

(29)

where Tµν is the energy-momentum tensor corresponding to any matter content in the D-
dimensional spaces

Tµν =LM gµν−2
δLM

δgµν
. (30)

The boundary term yields a variation of the form:

δ∂M± = ε
2κD

∫
∂M±

dD−1 y
√

|h|
[(

K ±
µν−K ±gµν

)
δgµν

+nµ
(
∇αδgαµ− gαβ∇µδgαβ

)]
.

(31)

Observe that the second line of each expression cancel against each other by Gauss-Stokes
theorem [1].

With expressions (29) and (31) at hand and the action piece SLΣ
in Eq. (26) representing matter

content on the wall, one can then compute the dynamics of the whole composite space. How-
ever, one has to be careful, as the normal nµ is chosen to point in the direction of increasing
volume in the transverse directions, i.e. from M− to M+. This implies a change of the sign6 for
nµ
±. This will affect the definition of the extrinsic curvature Kµν, as it contains the normal vector

nµ inside (see Eq. (15) and figure 2). Consequently, we have:

nµ =−nµ
+ = nµ

−. (32)

6but not in the value of the norm ε.
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The whole composition space (26) reads then:

δSTotal =δSM+ +δSM− −δS∂M− +δS∂M+ +δSLΣ
=

= 1
2κD

∫
M+

dD x
√|g |

(
G+
µν−κD T +

µν

)
δgµν

+ 1
2κD

∫
M−

dD x
√|g |

(
G−
µν−κD T −

µν

)
δgµν

− ε
2κD

∫
Σ

dD−1 y
√
|h|

(
K +gµν−K +

µν

)
δgµν

+ ε
2κD

∫
Σ

dD−1 y
√
|h|

(
K −gµν−K −

µν

)
δgµν

− 1
2κD

∫
Σ

dD−1 y
√
|h|κD Sµνδgµν,

(33)

where Sµν represents the energy-momentum tensor (30) for all matter content living on the
hypersurface Σ. We can comfortably identify both Einstein equation for each manifold M± in
the first two lines of expression (33). Both spaces are independent solutions to the Einstein
equation, so they will not contribute to the equation of motion. Last three lines of preceding
expression correspond to the boundary geometrical contributions ∂M± (where the orientation
of the normal has already been taken into account) and any possible matter fields living on
such hypersurface. For the whole expression (33) to be zero, it is required that these last three
term cancel, so

κD Sµν = ε
[(

K −gµν−K −
µν

)
−

(
K +gµν−K +

µν

)]
(34)

A small massage and projecting down to tangent components, as these are tangential tensors
(11), we finally find:

κ5 Sab = ε(
[Kab]+−−hab [K ]+−

)
(35)

This is the (second) junction condition. Equation (35) states that the presence of a localised
energy-momentum tensor Sab on the hypersurface will source a jump discontinuity in the ex-
trinsic curvature. Alternatively, one can read it backwards: a D −1-dimensional hypersurface
Σ acting as the boundary of two different D-dimensional manifolds M±, which are indepen-
dent solutions to the Einstein equation, is required to be equipped with an energy-momentum
tensor Sab , proportional to the jump in the extrinsic curvature of the embedding, such that the
whole composite space is also solution to the Einstein equation.
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