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1 Introduction

1.1 About these notes

These notes contain a set of selected problems to discuss during the problem solving
session of Classical Electrodynamics subject at Uppsala University (Sweden). The
order you see in the table of content correspond to chronological order of the lectures
for this course. Each set of problems is related to the correponding lectures where
that content was discussed during the course (i.e. L1 = first lecture). The title of each
problem statement is linked to its solution. Try first without looking at... Exercises
with an E in front of them correspond to old exam ones.

In case you find some typo, mistake or section to improve, please send an email to
daniel.panizo@... with indications where the issue is1.

1.2 Recommended Bibliography

• Classical Electrodynamics, John David Jackson. You may not like this book
at first glance. Neither second, third... but it contains a formal and serious
approach to all the topics that are going to be covered during the lectures. It
contains important examples and explanations.

• Introduction to Electrodyamics, David J. Griffiths. Excellent book for a first
approach to many of the concepts in this course. Its level does not cover the
one expected for this course, but after reading once2 you can jump into Jack-
son.

• Electromagnetic Field Theory, Bo Thidé. It does not contain all the material
of the course, but it includes several derivations of formulae and a good final
appendix with tons of identities and explanations of the mathematical tools.

• Space and Geometry: An introduction to General Relativity, Sean Carroll.
This is some extra material to read about tensor notation. The first chapter,
and part of the second one, cover the properties of the tensorial language we
are going to use. This will be useful for the covariant formalism of electrody-
namics and Lagrangian manipulation parts of this course.

• FMM: Exercise Notes, S.Giri & G. Kälin. Uploaded to Studium. It contains the
most useful mathematical methods and examples that show how to use them.
Totally recommended to refresh your mathematical manipulation.

1Title of the problem, number of equation as reference, etc
2Sections, not the whole book.
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• Internet. As you may know, apart from Social Networks and kitten videos, it
contains an enormous amount of resources when used in a proper way.

1.3 Tips to enhance your understanding

Here we offer a set of tips in order to enhance your problem-solving capability.

• Read twice/ thrice/ hundredice the statement of a problem until you really un-
derstand what is asking you to solve. You can apply the same principle when
reading through sections of books, notes, etc.

• "Pachanguera": Although it is a Spanish word to describe dynamic-noisy-low
quality music, it can be also used to describe what a drawing sketch is. It is
easier to remember what the problem is asking for if you draw a low quality
picture of the set up. You can understand a problem in a better way if you
translate to a picture the description given in the statement.

• "Explain yourself": It is nice for your future self3 and for the people who will
correct your exercises/exam if you explain with descriptive sentences the pro-
cess of your calculations. It gives a context to whoever reads through your prob-
lems and help you to stay focus on the final target (solution) you are looking for.

• "Tolle, Lege": Take it, read it. Saint Augustine was wise enough to know that if
you do not open and read books, you will not learn. It applies from religion to
physics. If you do not understand what you are reading, try first point of these
recommendations. Also, you are more than encouraged to ask the Teacher or
teacher assistant.

3Has it not happened to you that you try to do your exercises again to prepare for the exam and you
cannot understand why you calculated something in a particular way?
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2 Problems

2.1 Electrostatics (L1, L2)

2.1.1 Conducting ball

A conducting ball of radius R and total charge Q sits in a homogeneous electric field
E⃗ = E0ẑ. How does the electric field change by the presence of the ball? (Make an
Ansatz of the form Φ(r,θ,φ) = f0(r )+ f1(r )cosθ and motivate it.) Tip: Ẑ = cosθr̂ +
sinθθ̂.

2.1.2 Conducting ball Again

1. A point charge q sits at a⃗ inside a conducting uncharged sphere that is earthed
with radius R(|a⃗| < R).Compute the potential and the electric field inside the
sphere using the method of mirror charges. Compute also the induced charge
density on the surface of the sphere and show that the total charge on the sur-
face is −q . What does the Gauss theorem say about the electrical field outside
the sphere?

2. Do the same analysis with the change that the sphere is isolated and uncharged.
Tip: Determine the electric field outside the sphere with the new b.c.

3. Follow again the same procedure as b for a sphere that is isolated and with
charge Q.

2.1.3 The Capacitance of an off-centered Capacitor

A spherical conducting shell centered at the origin has radius R1 and is maintained
at potential V1. A second spherical conducting shell maintained at potential V2 has
radius R2 > R1 but is centered at the point s ẑ where s ≪ R1.

1. To lowest order in s, show that the charge density induced on the surface of the
inner shell is

σ(θ) = ϵ0
R1R2 (V2 −V1)

R2 −R1

[
1

R2
1

− 3s

R3
2 −R3

1

cosθ

]
. (2.1.1)

Hint: Show first that the boundary of the outer shell is r2 ≈ R2 + s cosθ.

2. To lowest order in s, show that the force exerted on the inner shell is:

5



F =
∫

dS
σ2

2ϵ0
n̂ = ẑ2πR2

1

∫ π

dθ sinθ
σ2(θ)

2ϵ0
cosθ =− Q2

4πϵ0

sẑ

R3
2 −R3

1

. (2.1.2)

2.1.4 Spherical cavity and spherical functions

Consider a sphere of radius a where the surface of the upper hemisphere has a po-
tential +Φ0 and the surface of the lower hemisphere has a potential −Φ0. In this case
the Green Function is given by:

G
(
r,r ′)= 1∣∣∣⃗r − r⃗ ′

∣∣∣ − a

r ′
∣∣∣⃗r − a2

r ′2 r⃗ ′
∣∣∣ , (2.1.3)

where r⃗ ′ refers to a unit source outside the sphere and r⃗ to the point where the po-
tential is evaluated.

1. Using the expression for the expansion of 1∣∣∣⃗r−r⃗ ′
∣∣∣ in the appropriate basis show

that the Green’s function can be written as

G
(
r,r ′)= 4π

∑
l ,m

1

2l +1

[
r l<

r l+1>
− 1

a

(
a2

r r ′

)l+1]
Y ∗

l ,m

(
θ′,φ′)Yl ,m(θ,φ), (2.1.4)

2. Using Dirichlet boundary conditions, show that the potential outside the sphere
has fol- lowing the expansion.

Φ(r,θ,φ) =∑
l m

l +1

a2(2l +1)

(a

r

)l+1
Yl ,m(θ,φ)

∫
Φ0

(
θ′,φ′)Y ∗

l ,m

(
θ′,φ′)dΣ′, (2.1.5)

which tends to 0 as r →∞.

2.1.5 Green’s function between concentric spheres

Consider the green’s function for Neumann b.c. in the volume V between two con-
centric spheres between r = a and r = b, a < b. We write the potential as

Φ(x) = 1

4πϵ0

∫
V
ρ

(
x ′)G

(
x, x ′)d 3x ′+ 1

4π

∮
S

∂Φ

∂n′Gd a′, (2.1.6)
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where S is the surface of the boundary. This implies that the b.c. for the Green’s
function is given by:

∂

∂n′G
(
x, x ′)=−4π

S
, (2.1.7)

or x ′ in S. Expanding the Green’s function in spherical harmonics we get:

G
(
x, x ′)= ∞∑

l=0
gl

(
r,r ′)Pl (cosγ), (2.1.8)

where gl
(
r,r ′)= r l

l

r l+1>
+ fl

(
r,r ′), and γ is the angle between the vector x and x ′.

Also here one can prove that Pl (cosγ) = 4π
2l+1

∑
m Y ∗

l ,m

(
θ′,φ′)Yl ,m(θ,φ).

1. Show for l > 0 that the Green’s function takes the symmetric form:

gl
(
r,r ′)= r l<

r l+1>
+ 1

b2l+1 −a2l+1

[
l +1

l

(
r r ′)l + l

l +1

(ab)2l+1

(r r ′)l+1
+a2l+1

(
r l

r ′l+1
+ r ′l

r l+1

)]
(2.1.9)

2. Use the Green’s function that you found in the situation that you have a normal
electric field Er =−E0 cosθ at r = b and Er = 0 at r = a. Show that the potential
inside V is

Φ(x) = E0
r cosθ

1−p3

(
1+ a3

2r 3

)
, (2.1.10)

where p = a
b . Find also for the electric field that:

Er (r,θ) =−E0
cosθ

1−p3

(
1+ a3

r 3

)
, Eθ(r,θ) = E0

sinθ

1−p3

(
1+ a3

2r 3

)
. (2.1.11)

2.2 Multipoles (L3)

2.2.1 Spherical Multiple Moment

Consider the system where you have point charges +q at (a,0,0) and (0, a,0) and
charges −q at (−a,0,0) and (0,−a,0). Derive the spherical multiple moment ql ,m and
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write down the first two non vanishing terms. Express the charge density in spherical
coordinates and check that the integral over these densities produce the appropriate
total charge.

2.2.2 Multiple Moments in Cartesian Coordinates

1. Prove that Qi j is traceless.

2. Assume that q, p⃗,Qi j are in a specific coordinate system. Now find the new
quantities in a coordinate system which is related to the previous one by an R⃗
displacement. Assume now that you have charges q at (0, a,0) and (0,0, a) and
charge −q at (a,0,0)

3. Find q, p⃗,Qi j and check that the later one is traceless.

4. Can you find a coordinate system such that p⃗ ′ = 0? If yes what is the displace-
ment vector R⃗?

2.2.3 Exterior Multipoles for a Specified Potential on a Sphere

Let Φ(R,θ,φ) be specified values of the electrostatic potential on the surface of a
sphere. Show that the general form of an exterior, spherical multipole expansion
implies that,

Φ[⃗r ] =
∞∑

l=0

l∑
m=−l

(
R

r

)l+1

Yl ,m[Ω]
∫

dΩ′Φ[R,Ω′]Y ∗
l ′,m′[Ω′] (2.2.1)

For r > R. Given the previous potential expression, imagine the eight octants of
a spherical shell which are maintained at alternating electrostatic potentials ±V as
shown below in the following picture:

Figure 1: Potential distribution across the octants.
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Where view a is in perspective and b is looking down the z axis from above. Use the
results from previous section to find the asymptotic (r → ∞) form of the potential
produced by this shell configuration.

2.2.4 Radiating Fidget Spinner

Three identical point charges q are at the corners of an imaginary equilateral trian-
gle that lies in the x − y plane. The charges rotate with constant angular velocity ω
around the z -axis, which passes through the center of the triangle. Find the angu-
lar distribution of electric dipole, magnetic dipole, and electric quadrupole radiation
(treated separately) produced by this source.

2.3 Macroscopic Media (L3, L4)

2.3.1 A Conducting Sphere at a Dielectric Boundary

A conducting sphere with radius R and charge Q sits at the origin of coordinates. The
space outside the sphere above the z = 0 plane has dielectric constant κ1. The space
outside the sphere below the z = 0 plane has dielectric constant κ2.

Figure 2: Dielectric distribution around the sphere.

1. Find the potential everywhere outside the conductor.

2. Find the distributions of free charge and polarization charge wherever they
may be.

2.3.2 Polarization by Superposition

Two spheres with radius R have uniform but equal and opposite charge densities
±ρ. The centers of the two spheres fail to coincide by an infinitesimal displacement
vector δ. Show by direct superposition that the electric field produced by the spheres
is identical to the electric field produced by a sphere with a suitably chosen uniform
polarization P.
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2.3.3 The Field at the Center of a Polarized Cube

A cube is polarized uniformly parallel to one of its edges. Show that the electric field
at the center of the cube is E(0) = −P/3ϵ0. Compare with E(0) for a uniformly polar-
ized sphere. Hint: Recall the definition of solid angle.

2.3.4 E and D for an Annular Dielectric

1. The entire volume between two concentric spherical shells is filled with a ma-
terial with uniform polarization P. Find E(r) everywhere.

2. The entire volume inside a sphere of radius R is filled with polarized matter.
Find D(r) everywhere if P = P r̂/r 2.

2.3.5 E: A Charge and A Conducting Sphere

1. A charge q is placed at a distance d away from the center of a conducting sphere
of radius a < d . Let the potential at infinity and on the surface of the sphere be
0. Using the method of images find the total charge induced on the surface of
the sphere.

2. Suppose the conducting sphere and the charge q are as above but the potential
on the surface of the sphere is V ̸= 0 (the potential at infinity is 0 ). Find the total
charge on the surface of the sphere (hint: you need to place a second "image
charge" at the center of the sphere).

3. Now consider a different situation. There are two conducting spheres of radius
a whose centres are at a distance d that is much greater than a. The potential
at infinity is 0. One of the spheres is kept at a potential V and the other at −V.
Because a ≪ d when discussing the fields near one of the spheres you can ap-
proximate the other sphere as a single point charge located at its center. Using
this approximation find the total charge on the surface of each of the spheres.

4. Finally imagine that the space in between the two spheres is filled with a medium
of conductivityσ so that, in the presence of an electric field, there will be a cur-
rent density J⃗ =σE⃗ . Using Gauss’s law find the total current I flowing between
the two spheres. (Note: ignore the effects of any B⃗ produced by the moving
charges). Compute the effective resistance of the circuit R = 2V

I as a function of
a and d . What happens to R as d →∞. What happens to R as a → 0?

5. (For a bonus point) Can you give a qualitative reason for the behavior of R
found above? (Hint: think of resistors in series and parallel).
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2.3.6 E: Critical strain

A parallel plate capacitor is made of two identical parallel conducting plates of area
A. One plate carries a charge +q and the other a charge −q. The capacitor is filled
with a dielectric medium with permittivity ϵ. The distance between the two plates d
is variable because the dielectric is elastic. The elastic energy stored in the dielectric
is:

Uel =
1

2
k (d −d0)2 . (2.3.1)

where d0 and k are constants.

1. Find the separation of the plates at equilibrium d(q).

2. Find and plot the potential difference between the plates at equilibrium V (q)
as a function of q . Interpret the result.

2.4 Light and Polarisation (L5, L6)

2.4.1 Elliptic Polarisation Wave

Assume electromagnetic wave E⃗(x, t ) and the magnetic part of it that will not con-
tribute in the exercise. The propagation vector is in the z direction k⃗ = kẑ and the
wave has the following form

Ex (⃗x, t ) = A cos(kz −ωt ), (2.4.1a)

Ey (⃗x, t ) = B cos(kz −ωt +φ). (2.4.1b)

1. Show that the vector E⃗(0, t ) parametrizes an ellipse. Note that this vector de-
scribe the polarization. For which values of A,B andφ the polarization parametrizes
a circle? Tip: The ellipse equation is of the form ax2 +2bx y + c y2 + f = 0.

2. Show for general A and B that the wave can be written as a superposition of
two opposite circular polarized waves

E⃗ (⃗x, t ) = Re
(
E⃗+(z, t )+ E⃗+(z, t )

)
(2.4.2)

where E⃗±(z, t ) = A±ϵ±e i (kz−ωt ). Here we have that A± are constants that need
to be found and ϵ± = 1p

2
(x̂ ± i ŷ).
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2.4.2 A Sandwich of Light

Assume two half planes made out of a homogeneous isotropic, non magnetic, loss-
free, dielectric medium with refraction index n. The two planes are separated by vac-
uum and they are d distance away from each-other.

A wave is propagated from the below hitting the first surface of the medium with
vacuum with angle α. The wave has frequency ω.

Consider the two cases where the propagation is perpendicular to the plane of inci-
dent. Describe the phenomenon and find how much of the wave was transmitted or
reflected (energy/time).

2.4.3 Faraday Rotation During Propagation

For propagation along the z -axis, a medium supports left circular polarization with
index of refraction nL and right circular polarization with index of refraction nR . If a
plane wave propagating through this medium has E(z = 0, t ) = x̂E exp(−iωt ), find the
values of z where the wave is linearly polarized along the y -axis.

2.4.4 Charged Particle Motion in a Circularly Polarized Plane Wave

A particle with charge q and mass m interacts with a circularly polarized plane wave
in vacuum. The electric field of the wave is E(z, t ) = Re

{
(x̂+ i ŷ)E0 exp[i (kz −ωt )]

}
.

1. Let v± = vx ± i vy and Ω= 2qE0/mc. Show that the equations of motion for the
components of the particle’s velocity v can be written

d vz

d t
=1

2
Ω

{
v+e+i (kz−ωt ) + v−e−i (kz−ωt )

}
(2.4.3a)

d v±
d t

=Ω (c − vz)e∓i (kz−ωt ) (2.4.3b)

2. Let ℓ± = v±e±i (kz−ωt ) ± i cΩω and show that

d vz

d t
= 1

2
Ω (ℓ++ℓ−) = i

Ω

2ω

d

d t
(ℓ+−ℓ−) (2.4.4)

3. Let K be the constant of the motion defined by the two v̇z equations above.
Differentiate the equations in part (a) and establish that
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d 2vz

d t 2
+ [
Ω2 +ω2]vz =ω2K (2.4.5)

Use the initial conditions v(0) = 0 and v ′
z(0) = 0 to evaluate K and solve for

vz(t ). Describe the nature of the particle acceleration in the z -direction.

2.4.5 E: A Wave and Some Boundary Conditions

Consider an electromagnetic wave propagating in the vacuum in the half-space x3 ≥
0.

E⃗i (⃗x, t ) = E⃗0e i⃗k ·⃗x−iωt , (2.4.6a)

B⃗i (⃗x, t ) = k̂

c
× E⃗ , (2.4.6b)

where E⃗i satisfies k⃗ · E⃗i = 0 and the components of k⃗ are real. The frequency satisfies
ω2 = c2k⃗ · k⃗.

1. Suppose this wave is incident on a perfectly conducting plane placed at x3 = 0.
Let the plane of incidence be formed by k⃗ and x̂3. Write down an expression
for the electric and magnetic fields for the reflected wave E⃗r and B⃗r . (Consider
separately the case where E⃗r and E⃗i are both perpendicular to the plane of in-
cidence and the case where they are both contained in it.)

2. Now suppose there is a second conducting plane located at x3 = d > 0. Derive
what are the conditions on k⃗, such that in the region 0 < x3 < d the electric and
magnetic fields are given by:

E⃗ = E⃗i + E⃗r , B⃗ = B⃗i + B⃗r , (2.4.7)

where the incident and reflected fields are those found above.

3. Suppose now that the two conducting planes are orthogonal to each other. One
is placed at x3 = 0 and the other at x1 = 0. How many plane-waves do you need
generically to satisfy the Maxwell equations (with the appropriate boundary
conditions) in the region x1 > 0, −∞ < x2 < +∞, x3 > 0? Write down the
electric and magnetic fields for one such solution.
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2.4.6 E: Waving at the Properties of a Wave

Let E⃗ = ŷE0e i (hz−ωt )−κx be the electric field of a wave propagating in vacuum. The
parameters E0,h,ω,κ are real.

1. What is the magnetic field of the wave?

2. Use the wave equation for E⃗ to determine a relation between h,κ and ω.

3. Compute the time averaged Poynting vector.

2.5 Waveguides and Cavities (L7 , L8)

2.5.1 Electromagnetic Crosswalk

Imagine two electromagnetic beams intersecting at right angles. (ĒH , B̄H ) (moving
in the horizontal direction) propagates in the +x axis. (ĒV , B̄V ) (Vertical direction)
propagates in the +y direction. For simplicity, each beam is taken as a pure plane
wave cut of transversely so its cross section is a perfect square of area λ2 (Here λ

stands for the "space" each beam occupy). The fields are given by:

E⃗H =−E0e i (kx−ωt )ẑ (2.5.1a)

cB⃗H = E0e i (kx−ωt ) ŷ (2.5.1b)

E⃗V = E0e i (k y−ωt )ẑ (2.5.1c)

cB⃗V = E0e i (k y−ωt )x̂ (2.5.1d)

Where |x| = ∣∣y
∣∣= |z| <λ/2. The beams overlap in a cube centered at the origin where

the total fields are given by a linear combination of vertical and horizontal ones.

1. Calculate the time-averaged energy density 〈uE M (r̄ )〉 for the horizontal beam,
the vertical beam and the total field in the overlap region. Show that the least
of these takes its minimum value on the plane x = y . Compute Ē and B̄ on this
plane.

2. Calculate the time-averaged Poynting vector 〈S(r̄ )〉 for the H beam, the V beam
and the total field as in previous part. Try to make a sketch of 〈S(x, y)〉 every-
where the fields are defined.
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Figure 3: A sketch representation of the crossing beams and their components.

2.5.2 Waveguide Discontinuity

Two rectangular waveguides with different major sides (a1 < a2) along the x-axis and
equal minor sides (b1 = b2) along the y-axis4 are joined in the z = 0 plane (x = y = 0).
The first region (a1) propagates a T E1,0 mode in the +z-direction towards the second
region (a2). Find the amplitude of some excited modes in the second region. Check
also the limit where a1 = a2

5.

2.5.3 Guess Who? (Wavefilter Edition)

The figure below shows two circular conducting tubes in cross section. Each tube has
a thin metal screen inserted at one point along its length. One screen takes the form
of metal wires bent into concentric circles. The other takes the form of metal wires ar-
ranged like the spokes of a wheel. One of these tubes transmits only a low-frequency
TE waveguide mode down the tube. The other transmits only a low-frequency TM
waveguide mode down the tube. Explain which tube is which and why, using the fact
that the fields of a general waveguide satisfy ∇×E⊥ = iωBz ẑ.

2.5.4 An Electromagnetic Bat in a Resonant Cavity

The two-dimensional vectors km shown below are inclined at angles θm = mπ/3 with
respect to the positive x -axis. The vectors share a common magnitud |km | = k. Su-
perpose six waves with alternating amplitudes to form the scalar function

4I rotate the axis in my solution, but the result should be the same.
5To find the modes and limits, consider that the remaining open space at x = y = 0 between waveg-

uides is closed by a perfect conductor, so modes cannot scape from our set up.
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Figure 4: Both described wavefilters.

ψ(x, y, t ) =
5∑

m=0
(−1)k sin(ki · r− ckt ) (2.5.2)

Draw the outline of a two-dimensional resonant cavity which supports a TM mode
built from ψ(x, y, t ).

Figure 5: The vectorial distribution of the six waves.

2.5.5 Cutting off the Modes

Transverse electric and magnetic waves are propagated along a hollow, right, circu-
lar cylinder with inner radius R and conductivity σ. Find the cutoff frequencies of
the various TE and TM modes. Determine numerically the lowest cutoff frequency
(dominant mode) in terms of the tube radius and the ratio of cutoff frequencies of
the next four higher modes to that of the dominant mode. For this part, assume that
the conductivity of the cylinder is infinite.

2.5.6 E: Rectangular Waveguide and its Modes

Consider a waveguide whose section in the x-y plane is a rectangle with sides of
length a and b (see figure). The waveguide walls are perfect conductors. The inside
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of the waveguide can be considered to be the vacuum.

Figure 6: A sketch picture of the waveguide’s section.

1. What are the boundary conditions that the electric E⃗ and magnetic B⃗ fields
need to satisfy at the surface of a perfect conductor?

2. Consider a function ψ(x, y) that satisfies the equation

(
∂2

x +∂2
y

)
ψ(x, y)+γ2ψ(x, y) = 0. (2.5.3)

in the interior of the rectangle for some γ> 0. The cutoff frequencies of T E and
T M modes for the waveguide are obtained determining the possible values of
γ> 0 in the equation above provided that the function ψ(x, y) satisfies certain
boundary conditions at the walls of the waveguide. For TM modes it must be
that

ψ
∣∣
wall = 0, (2.5.4)

while for TE modes,

∂ψ

∂n

∣∣∣∣
wall

= 0. (2.5.5)

Where ∂ψ
∂n

∣∣∣
wall

is the derivative in the direction perpendicular to the wall. The

cutoff frequencies are then given by ω= cγ.

(a) For TM modes what is the smallest cut-off frequency?
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(b) For TE modes what is the smallest cut-toff frequency?

2.5.7 E: Mirror mirror on the wall...

Consider a waveguide whose section in the x-y plane is a square with sides of length
a (see figure A below). The waveguide walls are perfect conductors. The inside of the
waveguide can be considered to be the vacuum.

1. What are the boundary conditions that the electric E⃗ and magnetic B⃗ fields
need to satisfy at the surface of a perfect conductor?

2. Find the TM and TE modes for this wave-guide. For each mode display E⃗ · ẑ for
the TM modes and B⃗ · ẑ for the TE modes. Also find the cutoff frequency for
every mode.

3. Certain distinct modes have the same cutoff frequency. Why? By taking ap-
propriate linear combinations of the modes sharing the same cutoff frequency
construct TM and TE modes for a waveguide whose section is a right isosceles
triangle with catheti (short sides) of length a (see figure B above). Show explic-
itly E⃗ · ẑ for the TM modes and B⃗ · ẑ for the TE modes.

2.6 Radiation and Scattering (L9, L10)

2.6.1 Electric Dipole Radiation

Imagine two tiny metal spheres at distance d from each other connected by a wire,
where at time t , the one sphere carries a charge q(t ) = q0 cos(ωt ) while the other
sphere is given by −q(t ).

1. Calculate the electric potential far away from the dipole. Use d << r and d <<
c
ω
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2. Take the limit of ω→ 0 . What do you expect?

3. Now look at the case where also r >> c
ω , that is, when we are interested in large

distances from the source in comparison to the wavelength. How does the ex-
pression for the potential simplify in this case?

4. Obtain an expression for the vector potential in the limit d << r and d << c
ω .

5. Calculate the resulting electric and magnetic fields in the same limit with also
r >> c

ω
.

2.6.2 Metallic Shells

Two halves of a spherical metallic shell of radius R and infinite conductivity are sep-
arated by a very small insulating gap. an alternating potential is applied between the
two halves of the sphere so that the potentials are ±V cosωt . In the long-wavelength
limit, find the radiation field, the angular distribution of radiated power and the total
radiated power from the sphere.

2.6.3 Electrostatic Potential from a Dipole

Consider a dipole that has distance x⃗ ′ and a point P at distance x⃗ far away from the
dipole. Considering the general expression for the potential without boundary con-
ditions show that at large distances from the charge distribution the potential can
be approximated by using the electric dipole moment in first order. Then calculate
the potential in the case where the dipole is formed by two charges q+ and q− with
distance d between them.

2.6.4 Radiation Interference

Let the origin of coordinates be centered on a compact, time-harmonic source of
electromagnetic radiation. The time-averaged power radiated into a differential ele-
ment of solid angle dΩ centered on an observation point r has the form

dP

dΩ
∝|r̂×α| (2.6.1)

The vector α= p0 if the source has a time-dependent electric dipole moment p(t ) =
p0 cosωt . The vector α= m0 × r̂ if the source has a time-dependent magnetic dipole
moment m(t ) = m0 cosωt . For this problem, consider a source where p(t ) and m(t )
are present simultaneously.
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1. Show that the time-averaged angular distribution of power generally exhibits
interference between the two types of dipole radiation. Under what conditions
is there no interference?

2. Show that the time-averaged total power emitted by the source does not exhibit
interference.

2.6.5 Sinusoidal thin Antenna

A thin linear antenna of length d is excited in such a way that the sinusoidal current
makes a full wavelength of oscillation.

1. Calculate exactly the power radiated per unit solid angle and plot the angular
distribution of radiation.

2. Determine the total power radiated and find a numerical value for the radiation
resistance.

3. Calculate the multipole moments (electric dipole, magnetic dipole, and electric
quadrupole) exactly.

2.6.6 Scattering in Solid Sphere

A solid uniform sphere of radius R and conductivity σ acts as a scatterer of a plane-
wave beam of unpolarized radiation of frequencyω, withωR/c << 1. The conductiv-
ity is large enough that the skin depth δ is small compared to R.

1. Justify and use a magnetostatic scalar potential to determine the magnetic field
around the sphere, assuming the conductivity is infinite.

2. determine the absorption cross section of the sphere. Tip: The power loss from
a waveguide is Ploss

d a = 1
2σδ |n̂ × H⃗ |2.

2.6.7 Aperture (Science)

The aperture or apertures in a perfectly conducting plane screen can be viewed as the
location of effective sources that produce radiation (the diffracted fields). An aper-
ture whose dimensions are small compared with a wavelength acts as a source of
dipole radiation with the contributions of other multipoles being negligible.

1. Show that the effective electric and magnetic dipole moments can be expressed
in terms of integrals of the tangential electric field in the aperture as follows:
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p⃗ = ϵn̂
∫ (⃗

x · E⃗t an
)

d a, (2.6.2a)

m⃗ = 2

iωµ

∫ (
n̂ × E⃗t an

)
d a. (2.6.2b)

where E⃗tan is the exact tangential electric field in the aperture, n̂ is the normal
to the plane screen, directed into the region of interest, and the integration is
over the area of the openings.

2. Show that the expression for the magnetic moment can be transformed into

m⃗ = 2

µ

∫
x⃗(n̂ · B⃗)d a. (2.6.3)

2.6.8 Born Scattering from a Dielectric Cube

A plane wave E0 exp[i (k0 · r−ωt )] scatters from a dielectric cube with volume V = a3

and electric susceptibility χ≪ 1. Two cube edges align with k0 and E0.

1. Calculate the differential scattering cross section in the Born approximation.

2. Show that σBorn ≈ 1
4 k2a4χ2 when ka ≫ 1. Hint: The near-forward direction

dominates the scattering when ka ≫ 1

3. The weak scattering assumed by the Born approximation implies that

|Erad|/ |E0|≪ 1, (2.6.4)

for all q, even when r ≈ a. Deduce from this that the ka ≫ 1 result of part (b) is
valid only when σBorn ≪χa2.

2.6.9 E: Two Antennas Sitting Together

A circular loop of radius a made of conducting wire is centred at the origin and lies
in the x3 = 0 plane. Let be the polar angle in the x3 = 0 plane (i.e. figure). The wire
carries a current oscillating at frequency

I⃗ = I0φ̂e−iωt , (2.6.5)
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with I0 real. There is also a small antenna wire of length 2a along x̂3 centered at the
origin as in figure. An oscillating current is fed into the antenna at its midpoint so
that, away from the midpoint, the wire carries a linear charge density

λ= iλ0e−iωt , for 0 < x3 < a, λ=−iλ0e−iωt + c.c, for −a < x3 < 0. (2.6.6)

Where λ0 is real.

Figure 7: The two described antennas.

1. Find the electric dipole moment p⃗(ω) and the magnetic dipole moment m⃗(ω)
at fre- quency ω due to the antenna and to the wire loop.

2. Work in the approximation that c
ω
≫ a so that a multipole expansion is mean-

ingful. Determine the vector potential A⃗(⃗r ,ω) in Lorentz gauge due to the dipole
moments above in the radiation zone (that is |⃗r |≫ c

ω
).

3. In the same approximation write down the electric and magnetic fields E⃗ (⃗r ,ω)
and B⃗ (⃗r ,ω) in the radiation zone.

4. Determine the power emitted per unit solid angle by the antenna and loop in
the radiation zone. Write the answer as a function of the angle θ between x̂3

and r̂ .
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2.6.10 E: One... Err, Two Antennas

Consider a small antenna wire of length 2a along x̂3. Let the center of the wire be at
the origin. A current oscillating at frequency ω is fed into the antenna at its midpoint
so that away from the midpoint, the wire carries a linear charge density

λ=λ0e−iωt for 0 < x3 < a, λ=−λ0e−iωt for −a < x3 < 0, (2.6.7)

Where λ0 is real.

Figure 8: The aforamentioned antennas.

1. Find the electric dipole moment at frequency ω of the antenna p⃗(ω).

2. Determine the current I⃗ (x3) flowing along the wire.

3. Work in the approximation that c
ω ≫ a so that a multipole expansion is mean-

ingful. Determine the vector potential A⃗(⃗r ,ω) in Lorentz gauge due to the an-
tenna in the radiation zone (that) is |⃗r |≫ c

ω

)
.

4. In the same approximation write down the electric and magnetic fields E⃗ (⃗r ,ω)
and B⃗ (⃗r ,ω) in the radiation zone.

5. Now consider placing two antennas identical to the one above at the two points
(see figure)

P1 : (x1 = 0, x2 = b, x3 = 0) and P2 : (x1 = 0,x2 =−b,x3 = 0) . (2.6.8)

The two antennas are pointing along x̂3 and they are oscillating in phase.
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(a) Let b = 5πc
ω

. Determine the electric field E⃗ (x2) along the line L (see figure)
located at x3 = 0, x1 = d . Assume that d ≫ b

(b) Does the electric field you found above vanish somewhere along the line
L? If so where? Explain your result.

2.6.11 E : Who bent my Antenna?

An antenna is made of a circular conducting wire loop of radius a centered at the
origin. It lies in the x = 0 plane. Let −π< α≤ π be the polar angle in the x = 0 plane
(see figure at the top of next page). There is a gap in the wire at α = π so no current
can flow across. The antenna is fed an RF signal at α = 0 so that the wire carries a
current oscillating at frequency ω

I⃗ = I0(π−|α|)α̂e−iωt , −π<α<π, (2.6.9)

with I0 real.

Figure 9: Who bent it?

1. Find the electric dipole moment p⃗(ω) and the magnetic dipole moment m⃗(ω)
at frequency ω of the wire loop.

2. Work in the approximation that c
ω ≫ a so that a multipole expansion is mean-

ingful. Determine the vector potential A⃗(⃗r ,ω) in Lorentz gauge in the radiation
zone (that is |⃗r |≫ c

ω
) due to the dipole moments above.

3. In the same approximation write down the electric and magnetic fields E⃗ (⃗r ,ω)
and B⃗ (⃗r ,ω) in the radiation zone.
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4. Determine the power emitted per unit solid angle by the loop in the radiation
zone.

2.7 Covariant Formalism of Electrodynamics (L11, L12)

2.7.1 Getting Familiar with Four-Vectors

In the following exercise, we will learn some basic four-vector manipulations. The
greek indices µ,ν, . . . take values 0,1, . . . ,d , where d is the dimension of space:

1. Derive the position vector: Let now xµ = (
x0, x1, . . . , xd

)
and ∂µ = ∂

∂xµ .What is
∂µxµ? Can you see that it is indeed a (Lorentz) scalar?

2. We can define a general tensor as an object with multiple indices, both up and
down, i.e. Aµνρ

γδσ
. Its transformation properties follow from those ones of the

tensor product of vectors, i.e. x ′µy ′ν = Λ
µ
σΛ

ν
γxσyγ, which implies that A′µν =

Λ
µ
σΛ

ν
γAσγ.

Prove however, that not every tensor can be written as a product of vectors.
This means that it is not always possible to find aµ,bν such that Σµνaµbν (even
if Sµν is symmetric).

3. In order to distiguish between different tensors, we can tag them depending on
their properties. In the following, let Aµν be an antisymmetric tensor, that is
Aµν =−Aνµ and Sµν to be a symmetric tensor, so Sµν = Sνµ.

(a) Show that the (anti)symmetry property of a tensor is preserved by the
Lorentz transformations.

(b) Prove that SµνAµν = 0.

(c) Let us now introduce the concept of symmetrization and antisymmetriza-
tion of a tensor with two indices. For an arbitrary tensor Cµν we can define
that C (µν) = 1

2 (Cµν+Cνµ). In the same spirit, its antisymmetrisation goes
as C [µν] = 1

2 (Cµν−Cνµ).

Show that a general tensor with two indices can be uniquely decomposed
into the symmetric and antisymmetric part Cµν =C (µν) +C [µν].

2.7.2 Covariant Formalism of Electrodynamics

1. Given the electromagnetic field tensor Fµν with components
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F 0i =−E i , F i j =−ϵi j k Bk , Fµν =−Fνµ (2.7.1)

where ϵ123 = 1, compute in terms of E⃗ and B⃗ fields the following tensor objects:

• −FµνFµν

• ϵµνρσFµνFρσ

2. Show that the Maxwell equations,

∂t B⃗ +∇⃗× E⃗ = 0, (2.7.2)

∇⃗ · B⃗ = 0, (2.7.3)

are equivalent to the Bianchi identity ∂µFνλ+∂νFλµ+∂λFµν = 0.

3. Given the energy-momentum tensor,

T µν = Fµ
ρ Fρν− 1

4
gµνFρσFρσ, (2.7.4)

compute the components of T i j in terms of E⃗ and B⃗ fields.

4. Show that the Levi-Civita tensor ϵµνρσ is invariant under Lorentz transforma-
tions.

2.7.3 Lorentz Transformations for the Electromagnetic Field

1. Prove the general Lorentz transformation of the electric and the magnetic field.

2. Argue what happens to the angle between the electric and the magnetic field
under a general boost transformation.

2.7.4 Three Observers. "One Field"

For some event, observer A measures E = (α,0,0) and B = (α,0,2α, ) and observer B
measures E′ = (

E ′
x ,α,0

)
and B′ =

(
α,B ′

y ,α,
)

. Observer C moves with velocity v x̂ with

respect to observer B.

Find:
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1. the fields E′ and B′ measured by observer B.

2. the fields E′′ and B′′ measured by observer C.

2.7.5 Transformation of Force

A cylindrical column of electrons has uniform charge density ρ0 and radius a.

1. Find the force on an electron at a radius r < a.

2. A moving observer sees the column as a beam of electrons, each moving with
uniform speed v. What force does this observer report is felt by an electron in
the beam at a radius r < a ?

2.7.6 A Long Wire Moving Fast

An infinitely long straight wire of negligible cross-sectional area is at rest and has a
uniform linear charge density q0 in the inertial frame K ′. The frame K ′ move with a
velocity v⃗ parallel to the direction of the wire with respect to the laboratory frame K .

1. Write down the electric and magnetic fields in cylindrical coordinates in the
rest frame of the wire. Using the Lorentz transformation properties of the fields,
find the components of the electric and magnetic fields in the laboratory.

2. What are the charge and current densities associated with the wire in its rest
frame? In the laboratory?

3. From the laboratory charge and current densities, calculate directly the electric
and magnetic fields in the laboratory. Compare with the results of part 1.

2.7.7 Relativistic Ohm’s law

In the rest frame of a conducting medium the current density satisfies Ohm’s law,
J⃗ ′ =σE⃗ ′ in the rest frame.

1. Taking into account the possibility of convection current as well as conduction
current, show that the covariant generalization of Ohm’s law is

Jµ− 1

c2

(
Uν Jν

)
Uµ = σ

c
FµνUν, (2.7.5)

where Uµ is the 4 -velocity in the medium.
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2. Find the 3 -vector current in a frame where the medium has velocity v⃗ = cβ⃗
with respect to some initial frame.

3. If the medium is uncharged in its rest frame, what is the charge density and the
expression of the current density in the above frame.

2.7.8 E: A Loooooong Cylinder and Several Frames

1. An infinitely long cylinder of radius R has a uniform charge density ρ0 and is at
rest in an inertial frame K0. The frame K0 moves with a speed v⃗ parallel to the
direction of the cylinder with respect to the laboratory frame KL .

(a) Find the electric field E⃗0 and the magnetic field B⃗0 in the rest frame (inside
and outside the cylinder).

(b) Find the electric field E⃗L and the magnetic field B⃗L in the frame of the lab-
oratory (again both inside and outside the cylinder). Also find the current
density J⃗L and the charge density ρL in the laboratory.

(c) Add a second cylinder of radius R parallel to the first. The second cylinder
carries a charge density ρL and current density − J⃗L in the frame of the
laboratory. Let the distance between the axes of the two cylinders in the
laboratory be d > 2R. Find the electric and magnetic fields outside the
cylinders in the rest frame of the first cylinder K0.

(d) When there is only one cylinder is there an inertial reference frame where
the electric field vanishes? In the situation with the two cylinders is there
an inertial reference frame where the magnetic field B⃗ vanishes? Motivate
your answers.

2. Consider the energy momentum tensor T µν(x) of some theory invariant un-
der transla- tions and Lorentz transformations. The energy momentum is con-
served i.e. ∂µT µν = 0.

(a) Using the energy momentum tensor we can build a new object

cMµνρ(x) = xρT µν(x)−xνT µρ(x). (2.7.6)

Find what condition does T µν need to satisfy so that ∂µMµνρ = 0. (that is
Mµνρ is conserved.)

(b) (For a bonus point) As seen in class the conserved four-momentum is an
integral over space at any fixed time Pµ = ∫

t=const d 3xT 0µ. Can you give an
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interpretation to the conserved quantities Nνρ = ∫
t= const d 3xM 0µν? Ex-

plain.

2.7.9 E: Planes and Frames

In an inertial frame K0 there are two planes at x3 = 0 and x3 = a. The plane at x3 = 0
carries a uniform charge surface densityσwhile the plane at x3 = a carries a uniform
charge surface density −σ. Both planes are at rest in K0. The frame K0 moves with a
speed v⃗ = v x̂1 parallel to the x1 axis with respect to the laboratory frame KL .

1. Consider the electric field E⃗0 in the inertial frame K0. Assume that E⃗0 vanishes
for x3 < 0. What is E⃗0 between the two planes (that is for 0 < x3 < a) and in the
regionx3 > a?.

2. Find the electric E⃗L and magnetic B⃗L fields in the frame of the laboratory KL .

3. Find the charge surface densities on the two planes in the laboratory frame KL .

4. Find the surface current densities on the two planes in the laboratory frame KL .

5. Is there an inertial reference frame where the electric field E⃗ vanishes every-
where?

6. Consider the energy momentum tensor T µν(x) of some theory invariant under
translations and Lorentz transformations. The energy momentum is conserved
i.e. ∂µT µν = 0.

(a) Using the energy momentum tensor we can build a new object

Dµ(x) = xνT µν(x). (2.7.7)

Find what condition does T µν need to satisfy so that ∂µDµ = 0. (that is Dµ

is conserved.)

(b) Is the condition you found satisfied by the energy momentum tensor of

the electromagnetic fields T µν = 1
4π

(
FµρFν

ρ + 1
4 gµνFρλFρλ

)
?

2.7.10 E: Different Points of View

In an inertial reference frame there is an infinite long wire along the ẑ direction. The
wire is at rest and carries a nonzero linear charge density λ and a nonzero current
I⃗ = I ẑ.
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1. Boost to a different inertial reference frame moving with speed v⃗ = v ẑ with
respect to the rest frame of the wire. What is the linear charge density carried
by the wire in the new reference frame? What is the current?

2. Under which condition on the values of λ and I⃗ in the rest frame of the wire
is it possible to boost to a frame where the electric field produced by the wire
vanishes? Similarly under which condition on the values of λ and I⃗ in the rest
frame of the wire is it possible to boost to a frame where the magnetic field
produced by the wire vanishes?

2.7.11 E: Waves Across Reference Frames

In an inertial reference frame K the electric and magnetic fields of an electromagnetic
wave are given by

E⃗ = ẑCe i(kx x+ky y−ωt), B⃗ = c

ω

(
ky x̂ −kx ŷ

)
Ce i(kx x+ky y−ωt). (2.7.8)

A second reference frame K ′ moves with speed v⃗ = v x̂ with respect to K . Let the origin
of K and K ′ coincide at t = t ′ = 0.

1. Determine the electric and magnetic fields in the reference frame K ′ that is
E⃗ ′ (x ′, y ′, z ′, t ′

)
and B⃗ ′ (x ′, y ′, z ′, t ′

)
.

2. What is the direction of propagation of the wave in K ′? what is its frequency?

2.8 Lagrangian Manipulation (L12, L13)

2.8.1 A Relativistic Particle Coupled to a Scalar Field

The action for a relativistic point particle coupled by a strength g to a space-time-
dependent Lorentz scalar field ϕ(x) is

S =−mc2
∫

d s − g
∫

d sϕ(r(s)). (2.8.1)

Find the equation of motion for the particle. How does the force on the particle differ
from the Coulomb force of an electric field?

2.8.2 One-Dimensional Massive Scalar Field

A one-dimensional field theory with scalar potential ϕ(x, t ) is characterized by the
action
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S = 1

2

Ï
d td x

[
1

c2

(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2

−m2ϕ2
]

. (2.8.2)

Find the equation of motion for ϕ(x, t ) by both Lagrangian and Hamiltonian meth-
ods.

2.8.3 Introduction to Lagrangian Manipulations

An alternative Lagrangian density for the electromagnetic field6 is,

L =− 1

8π
∂αAβ∂

αAβ− 1

c
JαAα. (2.8.3)

1. Derive the Euler-Lagrange equations of motion. Are they the Maxwell equa-
tions? Under what assumptions?

2. Show explicitly, and with those previous assumptions, that this Lagrangian den-
sity differs from the usual one7 by a four-divergence. Does this divergence af-
fect the action or the equations of motion?

2.8.4 Coupling Extra Fields

An axionic field 8 a(x) is coupled to a gauge field Aµ(⃗x) with an associated field strength
Fµν. The action describing this system goes as:

S [a (⃗x), Aµ(⃗x)] =−1

2

∫
d 4x⃗∂µa∂µa − 1

4

∫
d 4x⃗FµνFµν

− 1

f

∫
d 4x⃗

[
aFµν∗Fµν−2∂µ

(
a Aν∗Fµν

)]
.

(2.8.4)

Where ∗F is dual to F and f is a constant.

1. Under what circumstances is this action Lorentz invariant?

2. Find the Equations of Motion.

6The one you have seen during lectures and/or books.
7L =− 1

16πFαβFαβ− 1
c JαAα.

8Can be thought as a scalar. We will see in the solutions that indeed it needs to behave as a pseu-
doscalar field.
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3. Show that S is invariant under a displacement of the axionic field as a (⃗x) →
a (⃗x)+ϵ.

4. Calculate the Noether current associated to the previous displacement invari-
ance.

2.8.5 E: Ponderous Light

Consider the following action for the four-potential Aµ and a scalar field φ.

S =
∫

d 4x

(
1

8π

(
∂µφ−m Aµ

)(
∂µφ−m Aµ

)− 1

16π
FµνFµν− 1

c
JµAµ

)
, (2.8.5)

where Fµν = ∂µAν−∂νAµ and Jµ is a conserved current that is ∂µ Jµ = 0.

1. Show that the action is invariant under gauge transformations Aµ → Aµ+∂µα
provided that the scalar φ also shifts as φ→ φ+m α. Gauge fix by imposing
φ= 0. Rewrite the action in this gauge.

2. Using the gauge fixed action write the equations of motion for Aµ.

3. By contracting the equations of motion with ∂µ obtain an equation for ∂µAµ.
Use this equation to simplify the equations of motion.

4. Find the form of a plane wave solution to the equations of motion with no
sources (Jµ = 0). Given a wave-vector k⃗ what is the frequency of the wave? How
many independent polarizations are there?

5. In the electrostatic case we have A⃗ = 0. Find the electrostatic potential Φ = A0

due to a single electric charge q at rest at the origin. (Hint: you may try a so-
lution of the form Φ(⃗x) = e−α|⃗x| f (⃗x) for some function f and an appropriately
chosen constant α)

2.9 Radiation and Relativistic Dynamics (L14)

2.9.1 Emission Rates by Lorentz Transformation

An electron enters and exits a capacitor with parallel-plate separation d through two
small holes. The electron velocity is given by v ẑ and it is parallel to the capacitor
electric field E⃗ . The change in the electron velocity is small. Calculate the total energy
∆U ′

E M and its linear momentum ∆P ′
E M that was radiated by the electron in both rest

and laboraty frames (∆UE M and ∆PE M respectively).
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2.9.2 A Merry Go Round of Radiating Particles

N identical, equally spaced9 point particles, each with a charge q , move in a circle of
radius a. All of them have the same constant speed v around the ring. Show that the
Lienard-Wiechert electric field is static everywhere on the symmetry axis.

2.9.3 The Direction of the Velocity Field

Prove that the "velocity" part of the Lienard-Wiechert electric field points to the ob-
server from the "anticipated position" of the moving point charge. The latter is the
position the charge would have moved if it retained the velocity v⃗r et from t = tr et to
the present time of observation.

2.9.4 Radiating 14.4 Jackson Problem

Using the Liénard - Wiechert electric field, discuss the time-averaged power radiated
per unit solid angle by a charged particle (e−) in a non-relativistic motion in the next
two different cases:

1. Along the z axis with position given by z(t ) = acos(ωt ),

2. In a circle of radius R in the plane x y with constant angular frecuency w0.

2.9.5 A Fast Particle in a Constant Electric Field

A relativistic point particle with charge q and mass m moves in response to a uniform
electric field E = E ẑ. The initial energy, linear momentum, and velocity are E0, p0, and
u(0) = u0ŷ. Find r(t ) and show that eliminating t gives the particle trajectory

z = E0

qE
cosh

(
qE y

cp0

)
. (2.9.1)

Check the non-relativistic limit.

2.9.6 A Ringy Radiating Problem

1. A small current loop moves with constant velocity v0 as viewed in the labora-
tory frame. Find the vector potential A(r) and the scalar potential ϕ(r) in the
lab frame. It may be convenient to introduce the vector R = r−v0t

9Is coronavirus still around?
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2. Take the limit v0 ≪ c in your formulae and deduce that the moving loop pos-
sesses both a magnetic dipole moment and an electric dipole moment.

3 Solutions

3.1 Electrostatics

3.1.1 Conducting ball

We have a conducting ball which is placed in an homogenous electric field E⃗ = Ez ẑ.
The starting point is to consider the general spherical solution for a "hollow" sphere
on a constant field. Let’s discuss this in depth.

This sphere has charge that is homogeneously distributed. On top of that, we can
infer the following: If the field E⃗ is constant, the potential of this field should be linear
with respect to z, as −∇⃗Φ= E⃗ . So V ∼ E0z ẑ. But this would only be if the sphere was
not present there. We also have to account for the field generated by the charge of
the sphere and, hence, the potential of it. But here comes the trick. The potential
generated by the sphere in negligible from far away. Why? We know that E⃗ = 0 inside
conductors, so the potential Φ inside of the sphere is a constant. By Gauss, we also
know that the electric field generated by the sphere outside decreases proportionally
as E⃗ ∝ Q

r 2 . When r ≫ R, with r being the observation position, we have that E⃗ ∼ 0.

So we know how the potential Φ (hence E⃗) looks like at two specific regimes. On the
surface of the sphere this is:

Φr=R =− Q

4πϵ0R
, (3.1.1)

and far far away from it, which goes as:

Φr≫R =Φfield +Φsphere = E0 r cosθ︸ ︷︷ ︸
z

−
�
�

��Q

4πϵ0R
. (3.1.2)

How does E⃗ look like in some mid region? Again, if we know the potential, we know
the field. We have seen what the most general solution for the Laplace equation with
azimuthal symmetry is given by:

Φ(r,θ) = ∑
ℓ=0

(
Aℓr ℓ+ Bℓ

r ℓ+1

)
Pℓ(cosθ). (3.1.3)
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Where Pℓ(cosθ) are Legendre polynomials... If we expand the first few terms of pre-
vious expression we can see that:

Φ(r,θ) =
(

A0 + B0
r

)
︸ ︷︷ ︸

f0(r )

P0︸︷︷︸
1

+
(

A1r + B1
r 2

)
︸ ︷︷ ︸

f1(r )

P1︸︷︷︸
cosθ

+·· · (3.1.4)

it looks quite similar to the given Ansatz in the statement of the problem! In fact, we
can now use this expression to fix the values of the coefficients Aℓ,Bℓ with help of
boundary conditionsΦr=R andΦr≫R .

Φr=R =− Q
4πϵ0R =

(
A0 + B0

R

)
+

(
A1r + B1

R2

)
cosθ =

= ·· ·matching powers of R · · · =
→ B0 =− Q

4πϵ0
,

→ A0 +
(

A1r + B1
R2

)
cosθ = 0.

(3.1.5)

If we use the boundary condition at ∞, we obtain that:

Φr→∞ =−E0r cosθ = A0 +�
�B0
r +

(
A1r +

�
�B1

r 2

)
cosθ =

= ·· ·matching powers of r · · · =
→ A1 =−E0,

→ A0 = 0.

(3.1.6)

We only need to fix the value of B1. With all previous values fixed, go back to equation
?? to see obtain:

B1 = E0R3. (3.1.7)

Then, all values together yield the following result:

Φ(r,θ) =− Q
4πϵ0r −E0R cosθ

(
r
R − R2

r 2

)
, (3.1.8)

which one can easily see that behave as expected when r → 0 and r = R. The only
remaining thing is to compute the value of the electric field E⃗ given this potential. As
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we are dealing with an azimuthal symmetry, the gradient should be used in spherical
coordinates. Then:

E⃗ =−
(

Q
4πϵ0r +E0R cosθ

(
1
R + 2R2

r 3

))
r̂ + sinθE0R

(
1
R − R2

r 3

)
θ̂. (3.1.9)

3.1.2 Conducting ball Again

Let start by noting that the method of images consist of creating a fake charge q f

such that we can reproduce the result of the original set up in an easier way. In this
specific case, as we have the sphere earthed, we already know that the potential φ on
its surface is equal to 0 (φ(R) =0). Several points to consider in the current set up:

1. The charge qt (t for true) can be located anywhere inside the sphere. The im-
portant thing is that the sphere is earthed.

2. As we have axial symmetry, this problem can be reduced to a two dimensional
problem. We can use polar coordinates.

A rough sketch of this set-up considering a mirror images can be found in fig(??).

Figure 10: A rough sketch of this system studied by the method of images.

Then, the potential of this two charges, is given by superposition as:
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φ(⃗r ) = 1

4πϵ0

(
qt

|⃗rt |
+ q f∣∣⃗r f

∣∣
)

, (3.1.10)

where q f stands for false charge/mirror charge. Imposing the boundary condition
on the surface φ= 0, we have:

qt∣∣p⃗ − a⃗
∣∣ = −q f∣∣∣p⃗ − b⃗

∣∣∣ . (3.1.11)

Now, we have to realise that we have two potential positions (a,b) to fix, but just one
equations... This issue can be easily solved by accounting for two possible set ups:

1. Case where px = R, py = 0. In this case we will arrive to an equation that looks
like:

qt

|R −a| =
−q f∣∣∣R − b⃗

∣∣∣ →− qt

q f
= R −a

R −b
. (3.1.12)

Which is a good candidate as equation to solve for one of the variables. The
other can be obtained by:

2. Case where px = 0, py = R.

This will give another equation as:

− qt

q f
=

√
R2 +a2

R2 +b2
, (3.1.13)

which one can square both sides to get rid of the root.

From these two set-ups, one should realise that LHS of equations (??,??) are the same.
Hence, equate them and manipulate the algebra to arrive to:

(
R2 +a2) b −a b2 = R2a. (3.1.14)

This is a well-known second order equation that gives two solutions for b as: b1 = a,
which makes no sense, as it tells us to place both charges at the same position, and

37



b2 = R2

a , which relates a and b in a non-trivial way. Introduce this result into any of
both previous cases (??, ??) to find the relation between the charges expressed as:

q f =−R qt

a
(3.1.15)

With this result the potential φ follows as:

φ(⃗r ) = 1

4πϵ0

 qt∣∣p⃗ − a⃗
∣∣ − qt

R
a∣∣∣p⃗ −

(
R2

a ,0
)∣∣∣

= (3.1.16)

= qt

4πϵ0

 1p
r 2 +a2 −2r a cosθ

− 1

a
R

√
r 2 + R4

a2 −2r R2

a cosθ

 . (3.1.17)

The electric field E⃗ follows from taking the minus gradient of previous expression. To
obtain the induced charge density, we just need to recall that it is given the derivative
of the potentialφ respect to the normal of the surface where we want to evaluate such
density, i.e.

σ=−ϵ∂φ
∂n⃗

, (3.1.18)

In our case, due to spherical sym n⃗ = r and the surface of the sphere lies on r = R,
so we just have to evaluate there. If one is careful with all the arithmetic and simplify
cautiously, the result is:

σ= −q ϵ

4πϵ0aR

 1− R2

a2

3
√

R2

a2 +1−2 R
a cosθ

 . (3.1.19)

Regarding the Gauss theorem for the electric field outside the sphere, it will the total
charge inside the sphere divided by the total area where we evaluate the field.

Solutions b and c for this problems follows exactly the same steps as we have pre-
viously done. The main difference can be found in the boundary condition on the
surface of the sphere. As this is not any longer connected to earth, the potential on
the surface will be given by:
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φ(R) =V0. (3.1.20)

In any case, one can repeat both cases for different positions of the inner charge to
extract that the new fake charge q ′

f is:

q ′
f = q f +V0. (3.1.21)

From that point on, the rest of the exercise is straightforward to adapt to this new BC.

3.1.3 The Capacitance of an off-centered Capacitor

Given the description of the statement, the first thing should be to draw something
similar to this sketch:

Figure 11: A rough sketch of the system we want to study....

1):

Let (r2,θ) denote a point on the outer shell with respect to the origin of the inner
shell (The small one). By the law of cosines, the difference between R2

2 (big capacitor
centre) and r 2 (small centre) is given by: R2

2 = r 2
2+s2−2r2s cosθ. Therefore, expanding

the square root of r2 to first order in s, the boundary of the outer shell is:

r2 = R2 + s cosθ. (3.1.22)
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If the shells were exactly concentric, the potential between them would have the form
ϕ(r ) = a + b/r . Therefore, in light of the expansion to first order and the general
solution of Laplace’s equation in polar coordinates, we expect the potential in the
space between the displaced shells to take the form10:

ϕ(r,θ) = a + b

r
+ s

(
cr + d

r 2

)
cosθ+O

(
s2) (3.1.23)

To order s, fixing the boundary conditions at the shell surfaces we get

V1 =ϕ (R1,θ) = a + b

R1
+ s

(
cR1 + d

R2
1

)
cosθ,

V2 =ϕ (r2,θ) = a + b

R2 + s cosθ
+ s

(
c [R2 + s cosθ]+ d

[R2 + s cosθ]2

)
cosθ =

= a + b

R2
+ s

(
cR2 + d

R2
2

− b

R2
2

)
cosθ.

(3.1.24)

We know that the potential on the BC V1 and V2 are constants, so the coefficients of
cosθ must vanish in (??). This fixes d =−cR3

1 and b = c
(
R3

2 −R3
1

)
. Moreover, subtract-

ing both conditions in (??) we get an extra equation as:

b = (V1 −V2)R1R2/(R2 −R1) . (3.1.25)

so c and d written in terms of Ri are:

c = (V1 −V2)
R1R2(

R3
2 −R3

1

)
(R2 −R1)

, d =− (V1 −V2)
R4

1R2(
R3

2 −R3
1

)
(R2 −R1)

. (3.1.26)

Using (??), we can determine that the charge density on the surface of the inner shell
is:

σ(θ) =− ϵ0
∂ϕ

∂r

∣∣∣∣
r=R1

= ϵ0
R1R2 (V2 −V1)

R2 −R1

[
1

R2
1

− 3s

R3
2 −R3

1

cosθ

]
. (3.1.27)

10This is an Ansatz of the Laplace equation. Observe that the first term is the zeroth order in the
expansion in terms of Legendre polynomials for the most general solution, and the second term, is
the subleading order, but, there is an "s" in front of everything. This is considered as a perturbation,
as the inner sphere is slightly out of the centre.

40



The angular term in σ(θ) integrates to zero. Therefore, the total charge on the inner
shell and the capacitance (to first order in s ) are identical to the zero-order case of a
concentric capacitor:

C0 = Q

V1 −V2
= 4πϵ0

R1R2

R2 −R1
(3.1.28)

2):

By symmetry, there is only a z-component to the force on inner shell. Explicitly,

F =
∫

dS
σ2

2ϵ0
n̂ = ẑ2πR2

1

∫ π

dθ sinθ
σ2(θ)

2ϵ0
cosθ =− Q2

4πϵ0

sẑ

R3
2 −R3

1

(3.1.29)

3.1.4 Spherical cavity and spherical functions

1): First thing we should do in order to understand this problem, is to sketch how our
geometrical distribution of potentials look like. The following sketch shows that:

Figure 12: A rough sketch of the system we want to study....

We also know that the final appearance of the Green’s function:
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G
(
r,r ′)= 1∣∣∣⃗r − r⃗ ′

∣∣∣︸ ︷︷ ︸
G1

− a

r ′
∣∣∣⃗r − a2

r ′2 r⃗ ′
∣∣∣︸ ︷︷ ︸

G2

. (3.1.30)

So we have to basically massage two previous terms G1 and G2 to arrive to the desired
result. Let’s start by studying G1. We know that, by addition theorem for spherical
harmonics, G1 can be expressed as:

G
(
r,r ′)= 1∣∣∣⃗r − r⃗ ′

∣∣∣ = 4π
∑
l ,m

1

2l +1

r l<
r l+1>

Y ∗
l ,m

(
θ′,φ′)Yl ,m(θ,φ). (3.1.31)

So this part of the Green’s function does not need more explanation. On the other
hand, G2 requires some changes before we can apply previous expression. Starting
from:

G2(r,r ′) =−r⃗ ′− a

r ′
∣∣∣⃗r − a2

r ′2 r⃗ ′
∣∣∣ , (3.1.32)

We can expand the norm in the denominator, put r ′ inside the square root and extract
an overall a from the square root to see:

G2(r,r ′) = −�a√
��a

2
(

(r ′r )2

a2 +a2 −2r ′r cosγ
) , (3.1.33)

where γ is the angle between both vectors r⃗ and r⃗ ′. We can see r r ′ as a general vector
and a⃗ as the vector position on the surface. If we undo square root to move back to
an expression in terms of the norm, we immediately see that:

G2(r,r ′) = −1∣∣∣ r⃗ r ′
a − a⃗

∣∣∣ . (3.1.34)

From here, is easy to connect this expression with that of (??), as they have the same
form. Introducing this new term in eq (??) we arrive to the conclusion that (massag-
ing powers along the way):
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G
(
r,r ′)= 4π

∑
l ,m

1

2l +1

[
r l<

r l+1>
− 1

a

(
a2

r r ′

)l+1]
Y ∗

l ,m

(
θ′,φ′)Yl ,m(θ,φ), (3.1.35)

As we wanted to show.

2):

We would like to arrive to an expression of the form:

Φ(r,θ,φ) =∑
lm

1

a2

(a

r

)l+1
Yl ,m(θ,φ)

∫
Φ0

(
θ′,φ′)Y ∗

l ,m

(
θ′,φ′)dΣ′, (3.1.36)

This implies that we should start from the most general expression for a potential in
terms of the Green’s function, i.e:

Φ(r,θ,φ) = 1

4πϵ0

∫
V
ρ(x ′)G(x, x ′) d 3x − 1

4π

∮
S
Φ(x ′)

∂G

∂n′ d A′. (3.1.37)

As we do not have any charge distribution in this given problem, this means ρ(x ′) = 0.
So the first term will not contribute. The next step, is to evaluate the interior of the
remaining integral on the boundary where we can fix some parameters. In this case,
the boundary condition is such that:

∂G

∂n′
∣∣∣
n′=a

Φ(a,θ,φ) =±φ0. (3.1.38)

Then, we have to evaluate the derivative of the Green’s function G with respect to the
normal n′ = r ′ on the surface of the sphere (i.e r ′ = a after derivation). After some
algebra and powers manipulation, the result is:

∂G

∂n′
∣∣∣
n′=a

= 4π
∑
l ,m

l +1

2l +1

(
al−1

r l+1

)
Y ∗

l ,m

(
θ′,φ′)Yl ,m(θ,φ). (3.1.39)

So taking this result and introducing inside expression (??), together with the bound-
ary condition on the surface that Φ(a,θ,φ) =±φ0, we obtained the final desired for-
mula as:
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Φ(r,θ,φ) =∑
lm

l +1

a2(2l +1)

(a

r

)l+1
Yl ,m(θ,φ)

∫
Φ0

(
θ′,φ′)Y ∗

l ,m

(
θ′,φ′)dΣ′, (3.1.40)

which obviously fades out when r →∞.

3.1.5 Green’s function between concentric spheres

1):

First of all, we should proceed as always; To draw a sketch of the system we want to
study:

Figure 13: Some fancy sketch of the cavity we want to study.

This first part of the problem is asking us to show that, for a given concentric spherical
geometry, the radial part of the Green’s function looks like:

gl
(
r,r ′)= r l<

r l+1>
+ 1

b2l+1 −a2l+1

[
l +1

l

(
r r ′)l + l

l +1

(ab)2l+1

(r r ′)l+1
+a2l+1

(
r l

r ′l+1
+ r

′l

r l+1

)]
.

(3.1.41)

With a hint stating that any Green’s function can be decomposed in its radial part and
its spherical part, as a linear combination of spherical harmonics of the form:
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G
(
x, x ′)= ∞∑

l=0
gl

(
r,r ′)Pl (cosγ), (3.1.42)

Furthermore, we know that the Neumann’s boundary condition states that:

∂

∂n′G
(
x, x ′)=−4π

S
, (3.1.43)

So we basically have all ingredients to solve this part of the problem. If we know the
boundary condition appearance for the general Green’s function, we also know it for
its radial part. We just have to fix the coefficients Al and Bl inside gl making use of
the double boundary condition. Double, because we have two surface where we can
evaluate.
When evaluating on the inner sphere with radius a, we get:

∂G

∂n′
∣∣∣

a
=∑

l
∂r gl (r,r ′)Pl (cosγ)

∣∣∣
a
= 1

a2 +b2
. (3.1.44)

Where we have used that the normal is pointing outwards, so it has positive signature.
It is also remarkable to realise the following; Our previous expression (??) has neither
θ nor φ dependence, although there is a Legendre polynomial involved in its LHS.
So this is already stating that the only set of spherical harmonics that will contribute
in this problem to fix the value of the coefficients are those ones with l = 0 (i.e Y00 =

1p
4π

.) This implies that one can express the radial part of the Green’s function as:

∂r ′ gl

∣∣∣
r ′=a

= −1

a2 +b2
δl ,0, (3.1.45)

Now, we can do exactly the same for the outer sphere. Here there is a crucial differ-
ence; The normal to this surface, as we want to evaluate the Green’s function in the
region between both spheres, is pointing inwards, so it will cary a negative sign. The
same arguments we used for the inner one applies in this case too, so the result looks
like:

∂r ′ gl

∣∣∣
r ′=b

= 1

a2 +b2
δl ,0. (3.1.46)

Equipped with this knowledge, let’s the value of the coefficients. We know that:
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gl
(
r,r ′)= r l<

r l+1>
+ fl

(
r,r ′)= r l

l

r l+1>
+ Al r ′l +Bl r ′−(l+1). (3.1.47)

In this specific geometry we cannot drop any of the coefficients as we have done
in previous exercises. This is due to the fact that we are now dealing with things
happening inside and outside two different spheres that generate the given geometry.
In any case, We have two boundary conditions values two fix two different equations,
so we can solve for two different variables, Al and Bl . Introducing evaluated green’s
radial function (??) and (??) as RHS of derivative with respect r of (??), we will get two
expressions as:

l al−1

r l+1
+ l al−1 Al +Bl

−(l +1) al

a2(l+1)
= 1

a2 +b2
δl ,0, (3.1.48)

−(l +1)r l

bl+2
+ l bl−1 Al +Bl

−(l +1) bl

b2(l+1)
= −1

a2 +b2
δl ,0. (3.1.49)

Next step we have to perform, is just to solve for Al and Bl in this coupled system of
linear equations. Without loss of generality, we can set l ̸= 0, so we get LHS of both
expressions for the most general coefficients. The good part is that this simplifies
RHS to 0. Solving then, one arrives to:

Al =
1

a2l+1 +b2l+1

(
(l +1) r l

l
− a2l+1

r l+1

)
, (3.1.50)

Bl =
−1

b2l+1 −a2l+1

(
l (ab)2l+1

(l +1)r l+1
+ r l a2l+1

)
. (3.1.51)

The last step, after all despair and suffer we have gone through, it is just to introduce
these values inside expression (??), massaging it a little bit to obtain:

gl
(
r,r ′)= r l<

r l+1>
+ 1

b2l+1 −a2l+1

[
l +1

l

(
r r ′)l + l

l +1

(ab)2l+1

(r r ′)l+1
+a2l+1

(
r l

r ′l+1
+ r ′l

r l+1

)]
,

(3.1.52)

As we wanted to show.

2):
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From our previous result, we can then continue in order to obtain a close expression
for the potential Φ(r,θ,φ) in all the concentric region. Furthermore, with the poten-
tial, we can compute the value of the electric field E⃗ in that geometry. Hence, our
starting point will be the expression given Neumann boundary conditions is:

Φ(r,θ,φ) = 1

4πϵ0

∫
V
ρ(x ′)G(x, x ′) d 3x + 1

4π

∮
S

G(r,r ′)
∂Φ

∂n′ d A′. (3.1.53)

As always, the first question we have to raise when this expression pops up is: Is there
any charge in our system? As we do not have, this implies that ρ = 0, so the first term
will not contribute and it is the second one that does. As in the previous part, the
normal n′ is given by the radius r ′. Then, what is ∂r ′Φ inside previous expression? As
we know, the gradient of the potential is minus the electric field E⃗ , so in this case, we
get that the derivative of Φ respect to −r ′ is just the radial component of the electric
field E⃗ .

As we want to find a close expression for the potential, let us evaluate our previous
expression for r ′ = b (You can also do it at r ′ = a, but you will get no information, as
Er=a = 0). Recall the sign of the norm when computing the derivative.

Φ(r ′ = b,θ,φ) = 1

4π

∮
S

G(r,b)
∂Φ

∂n′︸︷︷︸
−Er =E0 cosθ′

b2 sinθ′︸ ︷︷ ︸
jacobian

dΩ′,

= 1

4π
E0b2

∮
G(r,b)sinθ′ cosθ′dΩ′.

(3.1.54)

Inside of previous equation, we see our Green’s function evaluated at b. Recall that
this function can be decomposed in its radial part, as we shown in previous section
(see eq(??)) and spherical harmonics. Introducing expression (??) in previous for-
mula, and using eq(??) we obtain:

Φ(b,θ,φ) = E0b2

4π

∑
l

4π

2l +1
gl (r,b)

∮
S

∑
m

Yl ,m(Ω) Y ∗
l ′,m′(Ω′)cosθ′ sinθ′dΩ′. (3.1.55)

Now we have a crucial point. A happy idea. Maria virgin, visiting us11, to give us a
hint. We have a cos in the game. We can exploit its presence and transform it into a
spherical harmonic that can help us fix the previous expression. As you may know:

11This a rough translation of a say we have in Spanish.
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Y1,0(Ω′) =
√

3

4π
cosθ′. (3.1.56)

Introducing this in expression (??), and making use of spherical harmonics orthonor-
mality, we obtain:

Φ(b,θ,φ) =∑
l

E0b2

2l +1
gl (r,b)

√
4π

3
Yl ,m(Ω)δm,0δl ,1. (3.1.57)

Simplifying annoying factors and evaluating gl (r,b) for l = 1, we arrive to the well
deserved expression as:

Φ(r,θ) = E0
r cosθ

1−p3

(
1+ a3

2r 3

)
, (3.1.58)

with notation p = a
b . We are just there. Now take this potential and derive it respect

to θ and φ to compute those electric field components as:

Er (r,θ) =−E0
cosθ

1−p3

(
1+ a3

r 3

)
, Eθ(r,θ) = E0

sinθ

1−p3

(
1+ a3

2r 3

)
, Eφ(r,θ) = 0. (3.1.59)

Finally, we are done. Congratulations to us. Take a rest, you deserve it. And some
chocolate and/or fancy beverage. You deserve it even more!

3.2 Multipoles

3.2.1 Spherical Multiple Moment

1):

The first thing one should do is to sketch how the system looks like:

Given this charge distribution, we already know that the total charge of the system is
Q = 0. Let’s first prove that the charge distribution integrated over the whole space
yields also a zero. We also know that the total charge is:

QT =
∫
ρ(⃗x ′)d 3x ′ =

∫
ρ(r ′,θ′,φ′) r ′2 sinθ′dr ′ dφ′ dθ′. (3.2.1)
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Figure 14: The distribution of the charges.

Recall that δ changes between Cartesian and spherical coordinates as:

δ(⃗x ′− x⃗) → 1
r ′2 sinφ′δ(r ′− r )δ(θ′−θ)δ(φ′−φ). (3.2.2)

So the charge density for the four point charged particles is:

ρ(r ′) = q
r ′2 sinφ′ (δ(r ′−a)δ(θ′−0)δ(φ′− π

2 )+δ(r ′−a)δ(θ′− π
2 )δ(φ′− π

2 )−
δ(r ′−a)δ(θ′−π)δ(φ′− π

2 )−δ(r ′−a)δ(θ′− 3π
2 )δ(φ′− π

2 )).
(3.2.3)

Which integrated over the whole space r ϵ[0,∞],θϵ[0,2π],φϵ[0,π] yields a total charge
QT = 0 as expected. What about the quadrupoles?

2):

They also want us to calculate the multiple moments (recall: The charge density ×
the harmonics). This is given by the following formula as:
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qlm =
∫

Y ∗
l m(θ′,φ′)r ′lρ(⃗x ′)d 3x ′ =

=
∫

Y ∗
l mr ′l q δ(r ′−a)δ(φ′−π2 )

r ′2 sinφ

(
δ(θ′−0)+δ(θ′− π

2 )−δ(θ′−π)−δ(θ′− 3π
2 )

)
r ′2 sinφd 3x ′ =

= q al (
Y ∗

l m(0, π2 )+Y ∗
lm(π2 , π2 )−Y ∗

l m(π, π2 )−Y ∗
lm( 3π

2 , π2 )
)

.
(3.2.4)

This can be further simplified, simply using the definition of spherical harmonics
given by:

Ylm(θ,φ) =
√

2l+1
4π

(l−m)!
(l+m)! P

m
l (cosφ)e i mθ, P m

l (x) = (−1)m(1−x2)m/2 d m

d xm Pl (x).
(3.2.5)

So a more specific expression for ql m is:

qlm = q al
√

2l+1
4π

(l−m)!
(l+m)! P

m
l (cos π2 )

(
1+ (−i )m − (−1)m − i m)

(3.2.6)

From here, one just have to compute the first non-zero entries. It follows that:

q0,0 = q1,0 = q0,1 = 0, q1,1 = a
√

3
2π (1− i ), q1,−1 =−a

√
3

2π (1+ i ). (3.2.7)

3.2.2 Multiple Moments in Cartesian Coordinates

UNDER CONSTRUCTION

3.2.3 Exterior Multipoles for a Specified Potential on a Sphere

1):

The general form of a spherical multipole expansion is given by:

Φ(r,θ,φ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(
Aℓmr ℓ+ Bℓm

r ℓ+1

)
Yℓm(Ω). (3.2.8)

As we are asked to show the general form of an exterior multipole expansion, we have
to get rid of Aℓm as this coefficient is only for r < R cases. For Bℓm we have the basic
description:
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Bℓm = 4π

2ℓ+1

∫
ρ

(
r′
)

r ′ℓY ⋆
ℓm

(
Ω′)dV ′. (3.2.9)

As we have to express eq(??) without the B coefficient, we need to find its explicit
value for ∀r > R. Here we can abuse from spherical harmonic properties as:

Φ(R,Ω) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Aℓm
Yℓm(Ω)

Rℓ+1
=

= Multiply both sides times Y ⋆
ℓ′m′ →∫

Φ
(
R,Ω′)Y ⋆

ℓ′m′
(
Ω′)dΩ′ =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Bℓm

Rℓ+1

∫
Yℓm

(
Ω′)Y ⋆

ℓ′m′
(
Ω′)dΩ′.

(3.2.10)

The orthonormality of the spherical harmonics gives the expansion coefficients as:

∫
dΩY ⋆

ℓ′,m′Yℓm = δℓ′ℓ δm′m →

Bℓm = Rℓ+1
∫
Φ

(
R,Ω′)Y ⋆

ℓ′m′
(
Ω′)dΩ′.

(3.2.11)

Then, all together looks like:

Φ(r) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(
R

r

)ℓ+1

Yℓm(Ω)
∫
ϕ

(
R,Ω′)Y ⋆

ℓ′m′
(
Ω′)dΩ′, r > R. (3.2.12)

2):

We need to solve how the potential Φ looks like in asymptotic limit (r →∞) for the
given distribution. In order to craft this, we have to find a linear combination of har-
monics that can reproduce the behaviour of the combination of the octants. This can
be done by brute force, integrating each of the different 8 regions for given solid angle
or to think a little bit to reduce the required computation.

We can see that V changes to ± every π/2 in φ angle. We know that the associated
number in the harmonics to this angle is m. Checking the values of Yℓm , we see that
the change will occur when m =±2, because:
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Yℓ±2 ∝ e±2iφ→ e±iπ =±1. (3.2.13)

So, if |m| = 2, ℓ≥ 2. We find a minimum value for ℓ. What about 2? Then, the associ-
ated spherical harmonic value reads:

Y22 ∝ sin2θe2iφ. (3.2.14)

This cannot be,as we want the associated value of θ to vary as ± when moving around
the octants. But if we check the following harmonic:

Y3±2 = 1
4π

√
105
2π sin2θcosθe±2iφ. (3.2.15)

Where cos will allow that variation. Then Φ = L.C
(
Y3,±2

)
. We are close to be able to

offer an expression for the potential when r →∞. Recall also that Φ|r=R = ±V and
when r →∞, only the smallest allowed value of ℓwill contribute in the leading order
of the expression. With all this, we can state that:

Φ(r) =V

(
R

r

)4

2

√
2π

105
(Y32 +Y3−2) =V

(
R

r

)4

sin2θcosθcos2φ, r →∞. (3.2.16)

3.2.4 Radiating Fidget Spinner

So we want to study this system and get its values of p,m and Qi j . Let the distance
from the axis of rotation to the charges be R, as displayed in the following sketch:

The electric dipole moment, as we know, is given by:

p =
∫

d 3r rρ(r, t ). (3.2.17)

Hence, we need to write down the position of the charges in this spinning device. We
know that each of them are at 2π/3 angular distance, so:

x1 = (R cos(ωt +0) ,R sin(ωt +0) ,0),

x2 = (R cos
(
ωt + 2π

3

)
,R sin

(
ωt + 2π

3

)
,0),

x3 = (R cos
(
ωt + 4π

3

)
,R sin

(
ωt + 4π

3

)
,0).

(3.2.18)
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Figure 15: We can imagine we placed a charge in each of the inner holes.

We therefore have:

px = q
3∑

i=1
xi = Rq(cos(ωt )+cos(ωt +2π/3)+cos(ωt −2π/3)) = 0 (3.2.19)

and, similarly, py = pz = 0. So, there is no electric dipole radiation.

The current density is given by j(r, t ) = vρ(r, t ) where the velocity v points (locally)
in the direction of the particle motion with magnitude v = Rω. The magnetic dipole
moment can be calculated as:

m =
∫

d 3r r× j =
∫

d 3r r×v︸︷︷︸
(x,y,0)×(x,y,0)=ẑ

ρ(r, t ) =

= R2ω ẑ
∫

d 3rρ(r, t ) = 3ωqR2 ẑ.

(3.2.20)

Observe that the magnetic dipole moment is time-independent! Therefore, there is
no magnetic dipole radiation.

So far, no interesting properties for this system. What about the quadrupole momen-
tum? The components of the electric quadrupole tensor are:

Qi j =
∫

d 3x
(
3xi x j − r 2δi j

)
ρ(x, t ). (3.2.21)
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The symmetry of ρ with respect to the x -axis dictates that Qx y = 0 (Compute it your-
self to check that everything nicely cancels). Since the charges all lie in the plane
z = 0, we find that Qxz =Qy z =Qzz = 0. So the only non-zero entries of Qi j are:

Qxx = q
3∑

i=1
x2

i = R2q
(
cos2(ωt )+cos2(ωt +2π/3)+cos2(ωt −2π/3)−1

)=
= 3R2q(cos(2ωt )+cos(2ωt −2π/3)+cos(2ωt +2π/3)) = 3

2
R2q.

(3.2.22)

and, recall that Tr (Q) = 0, so Qy y = −Qxx = −3
2 R2q. Since Q is time-independent,

there is no electric quadrupole radiation either.

3.3 Macroscopic Media

3.3.1 A Conducting Sphere at a Dielectric Boundary

We know that the general solution of Laplace’s equation is given by:

Φ(r,θ,φ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(
Aℓmr ℓ+ Bℓm

r ℓ+1

)
Yℓm(Ω). (3.3.1)

1):

Let the polar z -axis pass through the center of the sphere perpendicular to the di-
electric interface. Then, the solution of Laplace’s equation outside the sphere is:

Φ(r,θ) =
∞∑
ℓ=0

Bℓ

r ℓ+1
Pℓ(cosθ). (3.3.2)

At the sphere boundary, we must have Φ(R,θ) = V = const. This tells us that Bℓ = 0
for all ℓ ̸= 0 (as in the previous exercise, higher orders of r will not contribute) so:

Φ(r,θ) = B0

r
⇒ E = B0

r 2
r̂. (3.3.3)

Therefore, wherever the dielectric constant is κi (i = 1,2):

Di (r ) = ϵ0κi
B0

r 2
r̂. (3.3.4)
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The constant B0 can be obtained using one of Maxwell equations, ∇·D = ρc. Using a
spherical Gaussian surface,

∫
S

dS ·D = ϵ0B02π

[
κ1

∫ π/2

0
dθ sinθ+κ2

∫ π

π/2
dθ sinθ

]
= 2πϵ0B0 (κ1 +κ2) =Q. (3.3.5)

Then we have:

Φ(r ) = Q

2πϵ0 (κ1 +κ2)

1

r
(3.3.6)

2):

The free charge on the surface of the sphere follows from Gauss’ law as:

σc = D(R) · r̂ =
{

κ1
κ1+κ2

Q
2πR2 in region κ1

κ2
κ1+κ2

Q
2πR2 in region κ2

(3.3.7)

There is polarization charge at the sphere boundary, as we have such a free charge
distribution on the surface. Its value is σP = (1−κ)σc/κ. This charge is compensated
by polarization charge at infinity. There is no polarization charge at the κ1/κ2 inter-
face because E and hence P are everywhere radial. This means that P · n̂ = 0 at the
interface.

3.3.2 Polarization by Superposition

The Gauss’ law electric field produced by a sphere with uniform charge density ρ
centred at the origin is:

E(r ) =
{ ρ

3ϵ0
r, r < R

ρ
3ϵ0

R3

r 3 r r > R
(3.3.8)

An identical sphere, but with charge density −ρ displaced from the origin by δ, pro-
duces the negative version of the previous field except that r → r−δ. With this in
mind, the following can be approximated, such that:
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|r−δ|−3 = [(r−δ) · (r−δ)]−3/2 =

= 1

r 3

[
1− 2r ·δ

r 2
+ δ2

r 2

]−3/2

=

≈ 1

r 3

[
1+ 3r ·δ

r 2

]
.

(3.3.9)

Hence, the total field produced by the superposition of the two spheres is:

E(r ) =


ρ
3ϵ0

[r− (r−δ)] = ρδ
3ϵ0

r < R
ρR3

3ϵ0

{
r

r 3 − r−δ
r 3

[
1+ 3r·δ

r 2

]}
= ρR3

3ϵ0

[
δ−3(r̂·δ)r̂

r 3

]
r > R

(3.3.10)

Comparing these previous results with the field produced by a sphere with volume V
and polarization P :

E(r ) =
{ − P

3ϵ0
r < R

V
4πϵ0

[
3(r̂·P)r̂

r 3 − P
r 3

]
r > R

(3.3.11)

We find that the two of them are identical if we identify P =−ρδ.

3.3.3 The Field at the Center of a Polarized Cube

Our starting point will be the field produced by a polarised object, which reads:

E(r) = 1

4πϵ0

[∫
V
−∇′P′ r− r′

|r− r′|3 dV ′−
∫

S
dS′P′ r− r′

|r− r′|3
]

(3.3.12)

For this specific cubic case, we know that ρP is 0, as our cube is homogeneously po-
larised, so ∇P = 0. The surface polarization σP = P · n̂ is P on the right (R) face of the
cube and −P on the left (L) face of the cube. Since we only have surface charge,

E(r) = P

4πϵ0

[∫
R

dS′ r− r′

|r− r′|3 −
∫

L
dS′ r− r′

|r− r′|3
]

. (3.3.13)

To simplify our lives, better to consider the value of all this when r = 0. Then, at the
origin:

E(0) =− P

4πϵ0

[∫
R

dS′ r′

r ′3 −
∫

L
dS′ r′

r ′3

]
. (3.3.14)
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Figure 16: But the cake is still a lie...

By symmetry, the x and y components of these integrals are zero, as the polarisation
only happens along the z-axis. Therefore, if the origin of the primed system is at the
centre of the cube, we have:

Ez(0) =− P

4πϵ0

[∫
R

dS′ z ′

r ′3 −
∫

L
dS′ z ′

r ′3

]
=− 2P

4πϵ0

∫
R

dS′ z ′

r ′3 =

=− 2P

4πϵ0

∫
R

dS′ · r′

r ′3 = 2P

4πϵ0

∫
R

dΩ′.
(3.3.15)

The integral is the solid angle subtended by the right face at the centre of the cube.
By symmetry, this number must be 4π/6. Therefore, the electric field at the centre of
the cube is:

E(0) =− P

3ϵ0
(3.3.16)

This is exactly the same as the electric field at the centre of a uniformly polarized
sphere.

3.3.4 E and D for an Annular Dielectric

1):

We are going to treat the geometry shown below as the superposition of a ball with
radius b and uniform polarization P and a concentric ball with radius a and uniform
polarization −P.
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Figure 17: The two concentric spheres and the polarisation P.

From the text, the field produced by an origin-centered polarized ball with volume V
is:

E(r) =
{ − P

3ϵ0
r < R

V
4πϵ0

{
3(r·P)r

r 5 − P
r 3

}
r > R

(3.3.17)

Therefore, the field we want to study is given by:

E(r) =


0 r < a,

− P
3ϵ0

− a3

3ϵ0

{
3(r·P)r

r 5 − P
r 3

}
a < r < b,

b3−a3

3ϵ0

{
3(r·P)r

r 5 − P
r 3

}
r > b

(3.3.18)

2):

By symmetry, we should have D(r) = D(r )r̂. Therefore, the choice of a spherical Gaus-
sian surface of radius r gives:

∫
S

dS ·D = D(r )4πr 2 =Qc,encl = 0. (3.3.19)

Therefore, D = 0 everywhere.

3.3.5 E: A Charge and A Conducting Sphere

UNDER CONSTRUCTION
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3.3.6 E: Critical strain

1):

The capacitor system with two plates can vary its width, as the dielectric filling the
space between the plates is elastic. If we want to find an equilibrium point, we need
to compute the minima of stability of the potential controlling this system. In this
case we will have two different potential energies: The electric one, stored inside the
capacitor itself and the mechanical one, given by the elastic properties of the "spring"
between the plates. The electromagnetic energy stored inside a capacitor is given by:

UE M = 1

2
A dE⃗ · D⃗ = d q2

2 A ϵ
. (3.3.20)

As the charge q is constant at equilibrium, the equilibrium position d(q) will be given
by just the derivative of the total energy U of the system derived respect to d , i.e.:

UT =UE M +Uelas → ∂dUT = 0,→ d = d0 − q2

2Aϵk
. (3.3.21)

2):

The potential inside a capacitor is given the norm of the electric field times the sepa-
ration of plates, as:

∆V = ∥E⃗∥d = q d(q)

Aϵ
= q

Aϵ

(
d0 − q2

2Aϵk

)
. (3.3.22)

Observe that this expression has two roots: q = 0 and q =
√

2Aϵkd0. It also has a

maximum for q lying at qmax =
p

3 q0
3 . If we plot these results, we see that:

Figure 18: The potential for this elastic capacitor.
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At the critical point q0, the whole capacitor collapses, pointing to the instability of
this system.

3.4 Light and Polarisation

3.4.1 Elliptic Polarisation Wave

The first good piece of news is that the magnetic part will not contribute, so less com-
putation required. And we have the wave propagating in the z-direction.

1):

To show that E⃗(0, t ) parametrises an ellipse we just have to massage the given field
components into:

Ex(0, t ) = A cos(−ωt ),

Ey (0, t ) = B cos(φ−ωt ).
(3.4.1)

We also know that an ellipse looks like:

a x2 +2 b x y + c y2 + f = 0, ∀a,b,c, f ϵ R+. (3.4.2)

In this case, it is easy to think of both electric components as the x, y components of
the ellipse. Let’s square them to rewrite ??.

E 2
x(0, t ) = A2 cos2(ωt ),

Ey (0, t ) = B 2 cos2(φ−ωt ).
(3.4.3)

And now we prepare ourselves for a long boring trigonometrical computation12. We
start from:

12Recall to use trigonometrical identities to simplify!
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a E 2
x +2 b Ey Ex + c E 2

y + f = 0,a A2 +2 b A B cos(φ)+ c B 2 cos2(φ)︸ ︷︷ ︸
Â

 cos2(ωt )︸ ︷︷ ︸
x2

+

+

c B 2 sin2(φ)︸ ︷︷ ︸
Ĉ

 sin2(ωt )︸ ︷︷ ︸
y2

+

+

2 b A B sin(φ)+2 c B 2 cos(φ)sin(φ)︸ ︷︷ ︸
B̂

 cos(ωt )sin(ωt )︸ ︷︷ ︸
x y

+ f = 0.

(3.4.4)

Where we have done all those identifications to mimic an ellipse equation. We are
almost there. The main problem right now is that Â, B̂ ,Ĉ have a dependence on φ.
This means that they are not fixed and the appearance of the ellipse is not defined in
the form of a circle. We have to fix those values.

How do we get a circle? In this case we have B̂ = 0, Â = Ĉ so the equation results into

x2 + y2 + f
a = 0. The first and and most natural thought is to set φ = 0, which makes

B̂ = 0 but not Ĉ ... So we need something more involved, of the form:

B̂ =
2 b A B +2 c B 2 cos(φ)︸ ︷︷ ︸

0

sin(φ) →

→ b A B =−c B 2 cos(φ).

(3.4.5)

We also need:

a A2 +2 b A B cos(φ)+ c B 2 cos2(φ)︸ ︷︷ ︸
Â

= c B 2 sin2(φ)︸ ︷︷ ︸
Ĉ

,

→ substitute ?? and compute trigonometrics →
a A2 = c B 2.

(3.4.6)

Then, with ?? and ?? in mind, we go back to ?? to determine f as:
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f =−a2 A2 sin2(φ). (3.4.7)

With all previous requirements we have a parametrisation of a circle as desired.

2):

Well, well, this part of the exercise looks like we have to change the basis of our sys-
tem. The current description of the electric field is given by:

E(⃗x, t ) = (
A cos(kz −ωt ),B cos(kz −ωt +φ),0

)
. (3.4.8)

That we have to transform into something of the form:

E±(⃗x, t )New =ℜ [E+(z, t )+E−(z, t )] . (3.4.9)

And we know how the electric field looks like in this new basis as:

E± = A±p
2

(x̂ ± i ŷ)e i (kz−ωt ). (3.4.10)

So it seems that the only thing we have to do is to sum to prove that (??) is exactly the
same as (??). Then:

ℜ [E++E−] =ℜ


 A++A−p

2︸ ︷︷ ︸
A

e i ···x̂ + i (A+−A−)p
2︸ ︷︷ ︸

B

e i ··· ŷ


=

=ℜ
[

Ae i ···x̂ +Be i ··· ŷ
]
=

= Expand with e i x = cos x + i sin x and let ℜ kill the imaginary terms to get =
= A cos(kz −ωt )x̂ −B sin(kz −ωt )ŷ .

(3.4.11)

If one reabsorbs that − sign within the B one gets exactly the initial expression (??).
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3.4.2 A Sandwich of Light

This problem contains the fundamental physics behind etalons, interferometers, and
Fabry-Perot cavities13. There are three separate regions of uniform material, so we set
up different electric fields in each and then relate them using boundary conditions.
Because the incident wave is a plane wave, and the interfaces are flat, we assume the
fields in all regions take on the form of plane waves (We do not want to complicate
our lives). Let us call the incident material region "I", the air gap region "G", and the
last slab region "F". Place one slice between the incident slab and the gap at z = 0
and the other interface at z = d . In the incident slab, there is a forward-going wave
(the incident wave) and a backward-going wave (the sum of all reflected waves)14.

Figure 19: A plane wave trapped between two interphase.

In the gap there is also a forward-going wave (the sum of all forward-reflected waves)
and a backward-going wave (the sum of all backward-reflected waves). In the trans-
mitted slab there is only a forward-going wave (the sum of all transmitted waves).
Note that all materials are lossless so that n and k are real-valued. The waves are all
assumed to have linear polarization:

13Experimental, but important stuff. Not for the scope of this course.
14Observe the the picture.
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EI = ϵ̂0E0e i
( n

c ω0k̂·x−ω0t
)
+ ϵ̂1E1e i

( n
c ω1k̂1·x−ω1t

)
,

EG = ϵ̂2E2e i
( 1

c ω2k̂2·x−ω2t
)
+ ϵ̂3E3e i

( 1
c ω3k̂3·x−ω3t

)
,

EF = ϵ̂4E4e
i
(

n
c ω4

ˆ̂k4·(x−d)−ω4t
)
.

(3.4.12)

What are spatial boundary conditions? The boundary conditions must hold for all
time and all points on the boundary. This means that the exponentials must match
at z = 0 and z = d , leading to:

[
e i

( n
c ω0k̂·x−ω0t

)
= e i

( n
c ω1k̂i·x−ω1t

)
= e i

( 1
c ω2k̂2·x−ω2t

)
= e i

( 1
c ω3k̂3·x−ω3t

)]
z=0

,[
e i

( 1
c ω2 k̂2·x−ω2t

)
= e i

( 1
c ω3k̂3·x−ω3t

)
= e i

( n
c ω4k̂4·(x−d)−ω4t

)]
z=d

(3.4.13)

These two sets of equations must be true for all times t , so that the coefficients of t
must match independently, leading to ω0 = ω1 = ω2 = ω3 = ω4 = ω. With the time
components all cancelled out, we can simplify to something more handleable as:

[
nk̂ ·x = nk̂1 ·x = k̂2 ·x = k̂3 ·x

]
z=0 and

[
k̂2 ·x = k̂3 ·x = nk̂4 · (x−d)

]
z=d (3.4.14)

All the wave vectors lie in the same plane. We can assume we have aligned the plane
of incidence with the x − z plane. As a result, none of the wave vectors have any y
components. Expand the vectors into x and z components and define these compo-
nents in terms of the angles from the z axis (for example kx = k sinθi ,kz = k cosθi ) .
Evaluate at z = 0 and z = d . Note that evaluating at specific z locations reduces the
z-component equations down to just a bunch of constants. They have no meaning
at this point because we can always suck a constant phase factor into the remaining
undetermined coefficients E0,E1, etc. Because of the lack of meaningful information,
we completely drop the z components. All that remains is the x components, which
allow us to identify the angles as:

θI = θR , θG ,I = θG ,R , θI = θF,I , n sinθI = sinθG ,I , sinθG ,I = n sinθF,I . (3.4.15)

Congratulations to us! We have just derived Snell’s law. This will allow us to express
all relations in terms of the incident angle. Note that because we are dealing with
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plane waves and flat interfaces, we can work with all these fields at the lateral position
x = 0 without any loss of generality. In addition, we can evaluate the fields at time
t = 0 without any loss of generality. Lastly, we use the shorthand notation cosθg ,i =√

1−n2 sin2θi . With these simplifications, the fields become:

EI = ϵ̂0E0e i n
c ωcosθi z + ϵ̂1E1e−i n

c ωcosθi z ,

EG = ϵ̂2E2e i 1
c ωcosθg ,i z + ϵ̂3E3e−i 1

c ωcosθg ,i z ,

EF = ϵ̂4E4e i n
c ωcosθi (z−d).

(3.4.16)

This is going to be our starting point for the present waves in our system. We have
two possible cases: The polarisation of the wave being ⊥ to the plane of incidence
and polarisation contained in the plane. Let’s study both cases:

Perpendicular

This means that we leave the polarisation to fall in the y−direction. The electric and
magnetic fields (B = n

c k̂×E) are:

EI = ŷE0e i n
c ωcosθi z + ŷE1e−i n

c ωcosθi z ,

EG = ŷE2e i 1
c ωcosθg ,i z + ŷE3e−i 1

c ωcosθg ,i z ,

EF = ŷE4e i n
c ωcosθi (z−d),

BI = n
c (sinθi ẑ−cosθi x̂)E0e i n

c ωcosθi z + n
c (sinθi ẑ+cosθi x̂)E1e−i n

c ωcosθi z,

BG = 1
c

(
n sinθi ẑ−cosθg ,i x̂

)
E2e i 1

c ωcosθg ,i z + 1
c

(
n sinθi ẑ+cosθg ,i x̂

)
E3e−i 1

c ωcosθg ,i z ,

BF = n
c (sinθi z−cosθi x)E4e i

n
c ωcosθi (z−d).

(3.4.17)

Which will have to follow the boundary conditions15 when no charges or currents are
present:

[ϵ2E2 ·n = ϵ1E1 ·n]z=0,d , [E2 ×n = E1 ×n]z=0,d ,

[B2 ·n = B1 ·n]z=0,d ,
[

1
µ2

B2 ×n = 1
µ1

B1 ×n
]

z=0,d
.

(3.4.18)

15As we are dealing with dielectric materials, we must apply all boundary conditions.
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So 8 boundary conditions in total. With good manners, patience and a beverage by
your side, one can arrive to the following relations;

0 = 0 (2 equations will give this requirement),

E2 +E3 = E0 +E1 (2 equations will give this requirement),

E2 −E3 = b (E0 −E1) ,

E4 = E2e i a +E3e−i a (2 equations will give this requirement),

bE4 = E2e i a −E3e−i a .

(3.4.19)

where b = n cosθip
1−n2 sin2 θi

and a = 1
cωd

√
1−n2 sin2θi .

Considering that the incident strength E0 is taken to be a known, we have four inde-
pendent equations above in four unknowns and can therefore solve uniquely for the
different field strengths. After much algebra (mathematica in my case), we solve this
system of equations as:

E1

E0
=

(
1−b2

)
i sin a

2b cos a − (
1+b2

)
i sin a

,

E2

E0
= b(1+b)(cos a − i sin a)

2b cos a − i
(
1+b2

)
sin a

,

E3

E0
= b(1−b)(cos a + i sin a)

2b cos a − i
(
1+b2

)
sin a

,

E4

E0
= 2b

2b cos a − i
(
1+b2

)
sin a

.

(3.4.20)

We now want to find the fraction of reflected and transmitted power by taking the
magnitude squared of the first and last equation. We have to be careful because be-
yond the critical angle of total internal reflection, a and b become purely imaginary,
but we can still have valid transmission via the evanescent modes. Let us approach
the two cases separately. Below the critical angle, a and b are purely real-valued,
leading to:

R =
∣∣∣∣E1

E0

∣∣∣∣2

=
(
1−b2

)2
sin2 a

4b2 cos2 a + (
1+b2

)2 sin2 a
. (3.4.21)
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And the transmitted power is:

T =
∣∣∣∣E4

E0

∣∣∣∣2

= 4b2

4b2 cos2 a + (
1+b2

)2 sin2 a
. (3.4.22)

As for the case we want to go beyond the critical angle of internal reflection, we have
to notice than a,b become imaginary. We can rephrase them, for convenience, as
a = iα and b =−iβ so the reflected and transmitted powers in this case become:

R =
∣∣∣∣E1

E0

∣∣∣∣2

=
(
1+β2

)2
sinh2(α)

4β2 cosh2(α)+ (
1−β2

)2 sinh2(α)
,

T =
∣∣∣∣E4

E0

∣∣∣∣2

= 4β2

4β2 cosh2(α)+ (
1−β2

)2 sinh2(α)
.

(3.4.23)

Contained

We just have to do again the same thing for the polarization where the electric fields
are in the plane of incidence. All of the forward going waves have E fields pointing
in the negative- x/ positive- z direction and all the backwards going waves have E
pointing in the positive- x/ positive- z direction. Using B = (n/c)k̂×E, we find the
fields for parallel polarization are:

EI = (−cosθi x̂+ sinθi ẑ)E0e i n
c ωcosθi z + (cosθi x̂+ sinθi ẑ)E1e−i n

c ωcosθi z ,

EG = (−cosθg ,i x̂+n sinθi ẑ
)

E2e i 1
c ωcosθg ,i z + (

cosθg ,i x̂+n sinθi ẑ
)

E3e−i 1
c ωcosθg ,i z ,

EF = (−cosθi x̂+ sinθi ẑ)E4e i n
c ωcosθi (z−d),

BI =−ŷ(n/c)
(
E0e i n

c ωcosθi z +E1e−i n
c ωcosθi z

)
,

BG =−ŷ(1/c)
(
E2e i 1

c ωcosθg ,i z +E3e−i 1
c ωcosθg ,i z

)
,

BF =−ŷ(n/c)E4e i n
c ωcosθi (z−d).

(3.4.24)

Where, again, cosθg ,i =
√

1−n2 sin2θi . Imposing again eq(??), we will arrive to some
relations of the amplitude of E and B. If one solves the system of four equations, the
result is:
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E1

E0
=

(
n4 −b2

)
i sin a

2n2b cos a − i
(
n4 +b2

)
sin a

,

E2

E0
= bn

(
n2 +b

)
(cos a − i sin a)

2n2b cos a − i
(
n4 +b2

)
sin a

,

E3

E0
= bn

(
n2 −b

)
(cos a + i sin a)

2n2b cos a − i
(
n4 +b2

)
sin a

,

E4

E0
= 2n2b

2n2b cos a − i
(
n4 +b2

)
sin a

.

(3.4.25)

Which again, being careful about the critical angle, we find below this:

R =
∣∣∣∣E1

E0

∣∣∣∣2

=
(
n4 −b2

)2
sin2 a

4n4b2 cos2 a + (
n4 +b2

)2 sin2 a
,

T =
∣∣∣∣E4

E0

∣∣∣∣2

= 4n4b2

4n4b2 cos2 a + (
n4 +b2

)2 sin2 a
.

(3.4.26)

With a,b as in the stated in the previous part of the exercise.

3.4.3 Faraday Rotation During Propagation

Let kL =ωnL/c and kR =ωnR /c. Left and right circularly polarized plane waves with
the same amplitude and frequency propagating along the z -axis in the medium we
want to study. Then the plane waves should look like:

EL(z, t ) = E(x̂+ i ŷ)exp[i (kL z −ωt )] , ER (z, t ) = E(x̂− i ŷ)exp[i (kR z −ωt )] . (3.4.27)

In this basis, the given electric field is given by:

E(z = 0, t ) = 1

2
[EL(z = 0, t )+ER (z = 0, t )] . (3.4.28)

Therefore, at other points in space we find:
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E(z, t ) = 1

2
[EL(z, t )+ER (z, t )] ,

= 1

2
E

[
e i kL z +e i kR z

]
e−iωt x̂+ i

2
E

[
e i kL z −e i kR z

]
e−iωt ŷ.

(3.4.29)

The field will be linearly polarized along ŷ when:

e i kL z =−e i kR z = e i kR ze±i mπ, m = 1,3,5, . . . (3.4.30)

And this only happens when z takes values of the form:

z =± mπ

kL −kR
=±mπc/ω

nL −nR
, m = 1,3,5, . . . (3.4.31)

3.4.4 Charged Particle Motion in a Circular Polarized wave

a):

The physical electric field is:

E(z, t ) = (x̂+ i ŷ)E0e+i (kz−ωt ) + (x̂− i ŷ)E0e−i (kz−ωt ). (3.4.32)

And the corresponding magnetic field can be obtained from:

B(z, t ) = 1

c
ẑ×E(z, t ). (3.4.33)

Therefore (Long computation):

dv

d t
= q

m

[
E+v× 1

c
(ẑ×E)

]
=

= q

m

[(
1− vz

c

)
E+ ẑ

v ·E

c

]
=

= q

m

(
1− vz

c

)
E0

{
(x̂+ i ŷ)E0e+i (kz−ωt ) + (x̂− i ŷ)E0e−i (kz−ωt )

}
+

+ ẑ
qE0

mc

{(
vx + i vy

)
e+i (kz−ωt ) + (

vx − i vy
)

e−i (kz−ωt )
}

.

(3.4.34)
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So the required velocities are:

d vz

d t
= 1

2
Ω

{
v+e+i (kz−ωt ) + v−e−i (kz−ωt )

}
,

d v±
d t

=Ω (c − vz)e∓i (kz−ωt ),
(3.4.35)

Where v± = vx ± i vy andΩ= 2qE0/mc.

b):

Now define ℓ± = v±e±i (kz−ωt ) ± i cΩ/ω so

d vz

d t
= 1

2
Ω (ℓ++ℓ−) (3.4.36)

On the other hand,

dℓ±
d t

= d v±
d t

e±i (kz−ωt ) ∓ iωv±e±i (kz−ωt ) =Ω (c − vz)∓ iωv±e±i (kz−ωt ). (3.4.37)

Therefore, using (??),

d

d t
(ℓ−−ℓ+) =−iω

[
v+e i (kz−ωt ) + v−e−i (kz−ωt )

]
=−2iω

Ω

d vz

d t
. (3.4.38)

So we can conclude that:

d

d t

{
vz − i

Ω

2ω
(l+−ℓ−)

}
= 0 (3.4.39)

Hence, a constant of the motion is:

K = vz(0)− i
Ω

2ω
[l+(0)−ℓ−(0)] . (3.4.40)

c):

Differentiating (??) gives:
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d 2vz

d t 2
= Ω

2

[
dℓ+
d t

+ dℓ−
d t

]
=Ω2 (c − vz)− 1

2
iωΩ

{
v+e i (kz−ωt ) − v−e−i (kz−ωt )

}
. (3.4.41)

But, recall that ℓ+−ℓ− = v+e i (kz−ωt ) − v−e−i (kz−ωt ) +2iΩc/ω so

d 2vz

d t 2
=Ω2 (c − vz)− 1

2
iωΩ {ℓ+−ℓ−−2iΩc/ω} =−(

Ω2 +ω2)vz +ω2K . (3.4.42)

Now, imposing some initial conditions as v(0) = 0 and ℓ±(0) =±i cΩ/ω, in which case,
ω2K = cΩ2. Hence, if we define:

P = cΩ2 and Ω2
0 =Ω2 +ω2 (3.4.43)

The EOM for vz is

d 2vz

d t 2
+Ω2

0vz = P. (3.4.44)

This is solved by writing

d 2

d t 2

(
vz − P

Ω2
0

)
+Ω2

0

(
vz − P

Ω2
0

)
= 0. (3.4.45)

so vz(t ) = A sinΩ0t +B cosΩ0t +P/Ω2
0. The initial conditions vz(0) = v̇z(0) = 0 deter-

mine the constants and we finally can get:

vz(t ) = P

Ω2
0

(1−cosΩ0t ) ,

az(t ) = P

Ω2
0

sinΩ0t .
(3.4.46)

No steady acceleration occurs; the particle cyclically accelerates and decelerates as it
propagates along the z -axis.
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3.4.5 E: A Wave and Some Boundary Conditions

1):

The first thing we should do, as always, is to draw a sketch of the geometrical set-up
is described in the statement of the problem. It roughly looks like:

Figure 20: A sketch of the planes and waves in this problem.

With fields given by:

E⃗i (⃗x, t ) = E⃗0e i⃗k ·⃗x−iωt , (3.4.47a)

B⃗i (⃗x, t ) = k̂

c
× E⃗i , (3.4.47b)

where {i ,r } sub-indices stand for incident and reflected waves. Let us now suppose
that we have the incident wave on a perfect conductor at x3 = 0. The plane of inci-
dence is fixed by k̂ and x̂3. As we did in the previous problem A Sandwich of light, we
will have to consider perpendicular and parallel polarization with respect the plane
that the wave vector and x̂3 form. Without any loss of generality, the wave vector can
be written as:

k⃗ = k2x̂2 −k3x̂3. (3.4.48)

We can always rotate the system such that the wave vector is contained in the plane
x̂2 − x̂3. The problem does not state any other type of material in x3 < 0, so we keep
the same permeabilities as in x3 > 0 (µ2 =µ1 and ϵ2 = ϵ1). Now that we have k⃗ fixed in
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some plane, let us check the boundary conditions at x3 = 0. That for the wave vector
takes the well known form of:

[ki ·x = kr ·x]x3=0 (3.4.49)

While the boundary condition for the component of fields E and B are given at x3 = 0
by:

[E1 ·n = E2 ·n]x3=0 , [E1 ×n = E2 ×n]x3=0 ,

[B1 ·n = B2 ·n]x3=0 , [B1 ×n = B2 ×n]x3=0 .
(3.4.50)

These both packages have to be satisfied at any moment in time16. We can notice
that, although the norm form both wave vector ki ,r is the same, the x3 will change
in sign, as the wave is reflected. All in all, the most general expression for E, for this
region of space that we can think of, is a linear combination of the incoming wave
and the reflected one, as:

E1 = E⃗0i e i (k2 x̂2−k3 x̂3−ωt ) + E⃗0r e i (k2 x̂2+k3 x̂3−ωt ) (3.4.51)

Observe that we have not specified yet the polarisation of this field. This depends if
we want to consider it perpendicular o parallel to the incidence plane. Let’s do that
now:

PERPENDICULAR

In this case, that means that E⃗0i ,r = E0i ,r x̂1. Then, imposing boundary conditions (??)
we obtain that:

E1 × n̂ = 0 → E0i =−E0r

E1⊥ =−2i E0i x̂1 sin(k3x3)e i (k2x2−ωt ),
(3.4.52)

16But notice that we are dealing with a conducting material. This means that there should not be
any fields inside, but there can be fields outside, so E ·n does not make sense to set to 0. On top of
that, as we have a perfect conducting material, any incident electric field on the surface can induce a
current j⃗ , with surface energy density σ. This can be observed checking the four boundary condition
equations from Maxwell. Although to discuss this is not the scope of the problem, it is important to
notice it.
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where we set E2 = 0 as there is not refracted field below x3 = 0. For the magnetic field
B1 we can just take our previous result and compute:

Bi ⊥ = k⃗i ×Ei⊥
c

=− k3x̂2 +k2x̂3

c
E0i e i (k2 x̂2−k3 x̂3−ωt ),

Br ⊥ = k⃗r ×Er⊥
c

=− k3x̂2 −k2x̂3

c
E0i e i (k2 x̂2+k3 x̂3−ωt ).

(3.4.53)

Which results in the total wave:

B1⊥ =−2 c−1 (k3x̂2 cos(k3x3)− i k2x̂3 sin(k3x3)) E0i e i (k2 x̂2−ωt ). (3.4.54)

PARALLEL

In this case, we just have to write the the polarisation contained in the plane x̂2 − x̂3.
This will depend on the orientation of the wave vector of each of the waves. We can
just take our previous polarisation result and:

ki ,r × ϵ⃗1 = −k3x̂2 ∓k2x̂3

k
, (3.4.55)

where k stands for the norm of the wave vector. If we then repeat previous steps, we
obtain:

E1∥ = 2E0

k
(−cos(k3x3)k2x̂3 + i sin(k3x3)k3x̂2)e i (k2x2−ωt ),

B1∥ = 2E0x̂1 cos(k3x3)e i (k2x2−ωt ).
(3.4.56)

2):

What if we now set an extra interphase at a distance d from the previous one? The
first thing we will notice is that this problem starts looking more and more to A Sand-
wich of Light. Assuming there is no transmission to what may be above x3 = d , let’s
compute the boundary conditions (??) for the fields. If we study now the perpendic-
ular case, we will see that:

[E1⊥× n̂]x3=d = 0 → k3 = nπ

d
, ∀n ∈Z. (3.4.57)
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The same result applies to the parallel case. So the wavelength must be integer re-
lated to the height of the gap between both interphase.

3):

We can even further complicate our lives and consider that both conducting planes
form a 90 degrees angle. We can then study waves contained in the quarter of place
x3 > 0 and x1 > 0. The question we raise now is: How many waves, linearly combined,
we need to described a system like this? If we were naive enough, we would consider
a 1D wave (a line) hitting one of the two planes and bouncing twice on the planes,
creating 3 arrays that combined, will give us an answer. Buuuuut, we are not so naive,
are we? We know that plane waves are not straight lines, but two dimensional planes
propagating in spacetime. Hence, a wave like this, will hit at the same time both
conducting planes, and we will have two first bouncing lines: One propagating from
vertical plane to the horizontal one and other one moving in the opposite direction.
Both of them will hit the other plane at the same time, and bounce back in the oppo-
site direction to the initial wave came from. In any case, it is better to see what this
paragraph means than to interpret. Observe the following sketch:

Figure 21: Our bouncy wave.

Let us assume that Ei to be polarised in x̂2 direction. Their wave vectors have the
following form:

ki =∓k1x̂1 ±k3x̂3 +k2x̂2. (3.4.58)

Now we have the crucial point; We will have to evaluate (??) for each vertex17 in our

17Each vertex will be the LC of ingoing and outgoing waves respect to that plane.
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system. This is:

[(E1 +E2)× n̂]x1=0 = 0 → E1 =−E2,

[(E3 +E4)× n̂]x1=0 = 0 → E3 =−E4,

[(E1 +E3)× n̂]x3=0 = 0 → E1 =−E3,

[(E3 +E4)× n̂]x3=0 = 0 → E2 =−E4.

(3.4.59)

It is important to notice that n̂ will be different depending on which surface we eval-
uate in. Previous results yields how the amplitudes are related for each wave. Putting
that information together in the linear combination for these fields, we get:

ET =∑
i

Ei ,

= E0x̂2

(
e i (−k1x1−k3x3) −e i (k1x1−k3x3) −e i (−k1x1+k3x3) −e i (k1x1+k3x3)

)
e i (k2x2−ωt ),

= 4E0x̂2e i (k2x2−ωt ) sin(k1x1)cos(k3x3) .
(3.4.60)

3.4.6 E: Waving at the Properties of a Wave

UNDER CONSTRUCTION

3.5 Waveguides and Cavities

3.5.1 Electromagnetic Crosswalk

We have the following distribution of beams in the sketched intersection:

E⃗H =−E0e i (kx−ωt )ẑ (3.5.1a)

cB⃗H = E0e i (kx−ωt ) ŷ (3.5.1b)

E⃗V = E0e i (k y−ωt )ẑ (3.5.1c)

cB⃗V = E0e i (k y−ωt )x̂ (3.5.1d)

a)
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Figure 22: A sketch representation of the crossing beams and their components.

The H and V beams are both propagating, monochromatic plane waves with electric
field amplitude E0. We know that the time-average density energy is given by:

〈uEM〉H ,V = Re
{ϵ0

4

(
E ·E∗+ c2B ·B∗)}= 1

2
ϵ0E 2

0 . (3.5.2)

But at the very core of the intersection we are going to have a linear combination
of EH +EV and BH +BV , so this requires some computation to clean the following
expression:

〈uEM〉Total = Re
{ϵ0

4

[
(EH +EV ) · (E∗

H +E∗
V

)+ c2 (BH +BH ) · (B∗
H +B∗

V

)]}=

= Re

{
1

4

(
ϵ0

(
EH E∗

H + 1
ϵ0µ0

BH B∗
H

)}
+Re

{ϵ0

4

(
EV E∗

V + 1
ϵ0µ0

BV B∗
V

))}
+

+Re
{ϵ0

4

(
EH E∗

V +EV E∗
H + 1

ϵ0µ0
BH B∗

V + 1
ϵ0µ0

BV B∗
H

)}
=

= 〈uEM〉H +〈uEM〉V +
+Re

{ϵ0

4

(
EH E∗

V +EV E∗
H + 1

ϵ0µ0
BH B∗

V + 1
ϵ0µ0

BV B∗
H

)}
.

(3.5.3)

Let us study some of the pieces of the last term in the previous line, so we can simplify
even further. Observe that BH B∗

V = BV B∗
H = 0 because ŷ · x̂ = 0. So the only possible

contribution comes from:

EH E∗
V =−E 2

0 e i (kx−k y) ẑ · ẑ︸︷︷︸
=1

. (3.5.4)
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And similarly for the other term with opposite sign in the exponent. So puting all
together and recalling that 〈uEM〉H ,V = 1

2ϵ0E 2
0 , we have:

〈uEM〉Tot al = 1
2ϵ0E 2

0 + 1
2ϵ0E 2

0 − 1
2ϵ0E 2

0 Re
{

e i (kx−k y) +e−i (kx−k y)
}

︸ ︷︷ ︸
=2cos(arg)

=

= 1
2ϵ0E 2

0

[
2−cos(k

[
x − y

]
)
] (3.5.5)

This quantity is minimum when x = y . On that plane (the diagonal of the crosswalk),
the physical fields are:

E(x = y) = 0ẑ and cB(x = y) = E0 cos(kx −ωt )(x̂+ ŷ) (3.5.6)

b)

Now we are asked to do exactly the same for the time-averaged Poynting vector for a
plane wave propagating in the k̂ direction. This expression reads:

〈S〉 =
√

ϵ0
µ0
|E0|2k̂ = c 〈uEM〉 k̂. (3.5.7)

Therefore, the horizontal and vertical beams poynting expression follow from the
previous part of the exercise as:

〈S〉V = cϵ0E 2
0 ŷ and 〈S〉H = cϵ0E 2

0 x̂ (3.5.8)

So the superposition reads:

〈S〉 = 1

µ0
Re

{
(EH +EV )× (BH +BV )∗

}=
= 〈SH 〉+〈SV 〉+ 1

µ0
Re

{
EH ×B∗

V +EV ×B∗
H

}=
= 2ϵ0 c E 2

0(x̂+ ŷ)− E 2
0

µ0
Re

{
e i k(x−y)ŷ+e i k(y−x)x̂

}
︸ ︷︷ ︸

2cos(arg)

=

= 2ϵ0 cE 2
0[1−cosk(x − y)](x̂+ ŷ)

(3.5.9)
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From this previous expression we can see that, again, something interesting will take
place when x = y . Observe the following sketch. The Poynting vector grows outwards
from the diagonal x = y .

Figure 23: The Poynting vector is nule in the x = y diagonal.

c)

At the surface of a conductor, we must have E∥ = 0 and B⊥ = 0. For this problem, part
(a) shows that E points along ẑ and goes to zero at x = y. Part (a) showed also that B
is parallel to the x = y plane everywhere in the overlap region. Hence, the boundary
conditions for a perfect conductor are met at x = y .

3.5.2 Waveguide Discontinuity

The first question one has to ask is how the set-up looks like. It results to be some-
thing like the following:

Observe that a2 > a1. The wave we want to study is moving from the region of a1 to
a2. That difference of space will affect the modes of the wave, but how?
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Recall that a TE-mode means that E∥ = 0 respect to the motion of the wave. This

also implies that ∂Bz
∂n |s = 0. For the subscript 1,0 we refer to the specific mode of the

solution we want to study. A general wave solution for a system like this goes as:

ψ1(x, y) = Hm,n cos
(

mπx
a1

)
cos

(nπy
b

)
. (3.5.10)

For a TEm,0 mode in the first region, we have ψ1 ∝ cos(mπx/a1). As there is this
change in height in the waveguide between the first and the second region, we do
not know which new modes can or not appear. This can expressed as the following:

ψ2(x, y) =∑
m
ψm,0 =

∑
m

Hm,0 cos
(

mπx
a2

)
. (3.5.11)

The continuity of the tangential component of E shows that only TEm0 modes will
propagate in waveguide 2 because the absence of y -dependence in guide 1 cannot
generate y -dependence in guide 2 . Our task, then, is to find the expansion coeffi-
cients Hm,0 so

ψ2 =
∞∑

m=1
Hm,0 cos

(
mπx

a2

)
=

{
H cos(πx/a1) , 0 ≤ x ≤ a1

0, a1 < x ≤ a2
(3.5.12)

where we refer to H1,0 as H . This is a (quite dirty) job for the orthogonality properties
of the cosine functions. Integrating we arrive to:

Hm,0 = 2H

a1

∫ a1

0
d x cos(πx/a1)cos(mπx/a2) =

= 2H a2

π (a2 −ma1)
sin[π (1−ma1/a2)]− 2H a2

π (a2 +ma1)
sin[π (1+ma1/a2)] =

= 2Hma1a2

π
(
a2

2 −m2a2
1

) sin

(
mπ

a1

a2

)
.

(3.5.13)

When a1 = a2, Hm,0 = 0 for m ̸= 1. When m = 1, l’Hospital’s rule gives the expected
answer,

H1,0 = lim
m→1

d

dm

2H

π

sin(mπ)(
1−m2

) = lim
m→1

2πH cos(mπ)

−2mπ
= H . (3.5.14)
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3.5.3 Guess Who? (Wavefilter Edition)

Let first display how this two filters look like.

So we know that one has a T M- mode and the other one has a T E . Which is which?

Let’s start from the basics. A general wave-guide will relate the E and B fields as:

∇⃗×E⊥ = iωBz ẑ. (3.5.15)

And the modes requirements imply:

TM → Bz = 0 and Ez |surface = 0,

TE → Ez = 0 and ∂Bz
∂n |surface = 0.

(3.5.16)

In order to determine which mode correspond to which tube, let us choose the be-
havior of a TM mode, which implies then:

∇⃗×E⊥ = 0 → ∇⃗×∇⃗ ·φ= ∇⃗× (∂xφ,∂yφ,0). (3.5.17)

This is giving us a hint. If we think in terms of small differences of the field φ in the
x, y directions, we see that there should not be any change. Hence, we can discard
the possibility of this mode to be contained along those radial wires, which break the
symmetry. This is not the case of the tube A, where ∆E |r=cnt = 0. Then, TM corre-
sponds to the tube A while TE mode corresponds to the tube B.

3.5.4 An Electromagnetic Bat in a Resonant Cavity

In order to succesfully solve this problem we have to realise several things. The first
one is that the combination of waves can be expressed as a linear combination of
them as:
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ψ(x, y, t ) =
n∑

m=0
(−1)m sin(km · r− ckt ) , (3.5.18)

Where n is the total number of waves. The second thing to realise is that TM modes
in a cavity have the property that ψ= 0 on the walls of the cavity. Instead of getting a
reflection of the wave we emit18, we can sketch the inner structure of the cavity by us-
ing this anhilition property of the waves. We have to find the explicit expression of the
L.C. of waves we have inside de cavity and solve a system of equations to determine
the boundaries of this space. For that we need to compute ki · r.

Figure 24: The vectorial distribution of the six waves.

k0 · r = kx,

k1 · r = cos
[π

3

]
kx + sin

[π
3

]
k y = 1

2
kx +

p
3

2
k y,

k2 · r = cos

[
2π

3

]
kx + sin

[
2π

3

]
k y =−1

2
kx +

p
3

2
k y,

k3 · r =−kx,

k4 · r = cos

[
4π

3

]
kx + sin

[
4π

3

]
k y =−1

2
kx −

p
3

2
k y,

k5 · r = cos

[
5π

3

]
kx + sin

[
5π

3

]
k y = 1

2
kx −

p
3

2
k y.

(3.5.19)

So basically, we have a reflection of {0,1,2} for {3,4,5} waves. Expanding ψ we see:

18radar technology.
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ψ(x, y, t ) =sin(k0 · r− ckt )− sin(k1 · r− ckt )+ sin(k2 · r− ckt )−
− sin(k3 · r− ckt )+ sin(k4 · r− ckt )− sin(k5 · r− ckt ) =

=Im
{

e−iωt
(
e i (k0−k3)r −e i (k1−k4)r +e i (k2−k5)r

)}
=

=2cos(ωt )

{
sinkx − sin

[
kx

2
+
p

3k y

2

]
− sin

[
kx

2
−
p

3k y

2

]}
.

(3.5.20)

Now we have an explicit expression for ψ. It is time to look for its 0’s. To simplify our
life, we can use the following for the last to sin.

sin(a +a)− sin(a +b)− sin(a −b) =[sin a cos a +cos a sin a]−
− [sin a cosb +cos a sinb]−
− [sin a cosb −cos a sinb] =

=2sin a[cos a −cosb].

(3.5.21)

So the zeroes will be sitting at:

ψ(x, y, t ) = 2cos(w t )
{

2
(
sin( kx

2 )
(
cos( kx

2 )−cos(
p

3k y
2 )

))}
(3.5.22)

Where we have used the trick sin(kx) = 2sin(kx/2)cos(kx/2). This implies that we
have two possibilities, such that:

sin( kx
2 ) = 0 → x = 2nπ

k ,

cos( kx
2 )−cos(

p
3k y
2 ) = 0 → x =±p3y.

(3.5.23)

Therefore, if λ= 2π/k, the heavy solid lines in the figure below outline a 2D conduct-
ing cavity which will support a TM resonant mode built from ψ(x, y, t ).

3.5.5 E: Rectangular Waveguide and its Modes

UNDER CONSTRUCTION
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Figure 25: Our electromagnetic bat is safe between these four walls.

3.5.6 E: Mirror mirror on the wall...

1):

The boundary conditions that both fields have to satisfy on the surface of a perfect
conductor are just:

E∥ = 0, B⊥ = 0. (3.5.24)

2):

We know that we have to find a solution to:

(∇2
⊥+γ2)Ψ= 0, (3.5.25)

that we have to solve for the each of the modes (a.k.a different boundary solutions).
We already know that sin and cos are eigenfunctions for ∂2

i operator. This will help us
to construct the form of the solution, as we will impose the field boundary conditions
given by the conductor wall properties to determine if we need one trigonometric
function or the other.

TM modes

We have Ez(x, y) = 0 at the boundaries. Also, we want the parallel component of E = 0
when x = y = 0, so when we are in one of the corners. cos is not a 0 at this corner, so
our solution to (??) looks like:

Ez(x, y) = E0 sin
(
πnx

a

)
sin

(πmy
a

)
. (3.5.26)
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This will give a cut-off of the form:

γ2 = π2

a2

(
n2 +m2) . (3.5.27)

TE modes

Same story here. Now, the boundary condition is that n̂ · ∇⃗T B z(x, y) = 0 at the walls
of the conductor. So we require the cos function as:

Bz(x, y) = B0 cos
(
πnx

a

)
cos

(πmy
a

)
. (3.5.28)

With exactly the same cut-off frecuency γ2 as before.

3):

Why do different modes have the same cut-off frequency? Just take a look at expres-
sion (??). If one interchanges n,m values, the result is the same, but not the modes of
Bn,m and Bm,n . So basically, there is a symmetry in expression (??).

Actually, we can exploit this symmetry to craft modes that can be allowed in the sec-
ond scenario, when one cuts the waveguide through the diagonal. In this case we
want to impose that the fields, depending on the modes we study, are 0 in the line
x + y = a.

TM modes

Here we need to impose that Ez = 0 on that line. Let’s blindly follow the statement
and generate a general linear combination with both possibilities.

Ez = E (1)
0 sin

(
πnx

a

)
sin

(πmy
a

)+E 2
0 sin

(
πmx

a

)
sin

(πny
a

)
. (3.5.29)

We know that this expression should be equal to 0 when y = a−x. If we evaluate there
and use double angle trigonometric identities in wise way, we arrive to the following
expression:

0 = Ez |y=a−x = E (1)
0 sin

(
πnx

a

)
(−1)m+1 sin

(
πmx

a

)+E 2
0 sin

(
πmx

a

)
(−1)n+1 sin

(
πnx

a

)→
E (2) = (−1)m+n+1E (1)

0 .
(3.5.30)
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So the expression in this case for a triangular waveguide is:

Ez = E0
(
sin

(
πnx

a

)
sin

(πmy
a

)+ (−1)n+m+1 sin
(
πmx

a

)
sin

(πny
a

))
. (3.5.31)

TE modes

Same story here. In this case the conditions will come from (∂x +∂y )Bz = 0. If we craft
a general linear combination for the expression of the magnetic field as we did in
(??), compute its derivates and plug those requirements into this linear combination
expression, we will get:

Bz = B0
(
cos

(
πnx

a

)
cos

(πmy
a

)+ (−1)n+m cos
(
πmx

a

)
cos

(πny
a

))
. (3.5.32)

Powerful symmetry to exploit, is it not?

3.6 Radiation and Scattering

3.6.1 Electric Dipole Radiation

As always, the first we should do is to sketch the system we want to study;

Figure 26: Our time dependant dipole.

Where q(t ) = q0 cosωt . We can compute the potential as a superposition of both
charges as:
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V (r ) =
n∑

i=0

qi

4πϵ0ri
= q(t )

4πϵ0r1
− q(t )

4πϵ0r2
. (3.6.1)

As we can see in the sketch, there is a difference in the paths ri . If we are Far Far
away19, we can always approximate r ≫ d

2 , which will allow us to expand the norm
of r⃗i as:

|⃗ri | =
√

(⃗r ± (0,0, d
2 ))2 ≈

√
r 2 + d 2

4 ±dr cosθ. (3.6.2)

But one has also to consider that the change of charge in r position will have a differ-
ent delay depending on the path they have to travel. In this case we have to take into
account the retarded time as:

t± = t − r±
c . (3.6.3)

So the potential gets more involved with the following appearance:

V (r ) = q0

4πϵ0

 cos(ω(t− r+
c ))√

r 2+d 2

4 +dr cosθ

− cos(ω(t− r−
c ))√

r 2+d 2

4 −dr cosθ

 . (3.6.4)

And it is now when we can start taking radiation approximations.

1):

If we want to compute the potential far away, it basically means that d
r → 0. Extract r

in the denominator of expression (??) to see:

V (r ) = q0

4πϵ0

 cos(ω(t− r+
c ))

r

√
1+

�
�d 2

4r 2 +d
r cosθ

− cos(ω(t− r−
c ))

r

√
1+

�
�d 2

4r 2 −d
r cosθ

 . (3.6.5)

This will also affect r± inside cos, where we have to Taylor expand the square root
piece, yielding:

19With Fiona and her parents.
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cos
(
ω

(
t − r±

c

))≃ cos

ω(
t − r

c

)︸ ︷︷ ︸
A

± ωr d
2r c cosθ︸ ︷︷ ︸

B

=

→ c
w ≫ d → sin and cos with argument d

c/w can be Taylor expanded →

= cos
(
ω

(
t − r

c

))×1∓ sin
(
ω

(
t − r

c

))× ωd
2c cosθ.

(3.6.6)

It is important to notice that double angle cos(A +B) has been expanded and then,
leading contributions of the Taylor expansion have been taken (Hence cos(x) ∼ 1 and
sin(x) ∼ x ). Realise also that the term d

r inside the square roots of denominators in
(??) is small compared to 1. This has to be approximated by a Taylor series. Comput-
ing this, the potential V looks like (to 1st order):

V (r ) = q0d cosθ

4πϵ0r

[−sin(ω(t − r
c ))

c
ω+ cos(ω(t − r

c ))

r

]
. (3.6.7)

2):

In the case we want to discuss what happens if ω → 0 we just have to realise the
behaviour of the trigonometric functions when its argument is 0. In this case:

V (r ) = d q0 cosθ

4πϵ0r 2
. (3.6.8)

Which is basically a non-vibrating potential, as expected.

3):

If we want to simplify more the result obtained in section 1), demanding that the
observation distances is way bigger than the emitted wavelength, we just have to
study the schematic form the potential as:

V (r ) ∝ A

r
× c

ω
+
�
�
�B

r 2
. (3.6.9)

We can drop the second term as it goes with the inverse of the square of r , which
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will yield no contribution the further we observe. This can be done as we know that
cos ∈ [−1,1].

4):

To compute the vector potential A⃗(t , x⃗) given the assumptions we have been working
with during the previous sections, we just have to integrate the following under some
considerations:

A⃗(t , x⃗) = µ0
4π

∫
d 3x ′ 1

R J⃗ (t ′, x⃗ ′)r et . (3.6.10)

Where J⃗ is given by the charge flow.20 As we have the dipole oriented in the z-
direction, this is where the current will be located, as the variation in time of the
charge, so:

J⃗ = d q
d t v̂flow =−q0ωsin

(
ω(t − r±

c )
)

. (3.6.11)

And the integration limits are given by the position of each of the charges (From now
on, we can imagine this set-up as a small antenna located along the z-axis), so z ∈
[−d

2 , d
2 ].In this specific case we do not have to care too much about rpm, as its change

in value 21 will not change. So integral results, after all in:

A⃗(t , x⃗) = µo

4π

q0ωd sin
(
ω(t − r

c )
)

r
ẑ. (3.6.12)

5):

To finish this exercise, we are going to compute E and B in the mentioned limits. To
simplify our calculations, lets move our coordinate system from Cartesian to spheri-
cal coordinates, just by:

ẑ → (cosθ,−sinθ,0). (3.6.13)

Then, we just have to finally compute E and B using Maxwell’s equations. Extracting
from our memory22 the expression of the rotational and gradient in spherical coor-

20Other option is to use the continuity equation to obtain J⃗ . The charge are discrete ones located at
[−d

2 , d
2 ], so the integration should be easy, just in the z direction.

21if we moved d z a little bit through the axis, as we are far away from the source, the value of rpm

would not change too much, allowing us to identifying it as r .
22or Wikipedia.
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dinates23 we can start computing them. For B we find:

B = µ0q0ωd sinθ

4πr

(−ω
c cos(ω(t − r /c))+ 1

r sin(ω(t − r /c))
)
φ̂. (3.6.14)

In the case we want to compute the electric field, we have to do two steps (as it has
contributions from the electric potential V and the vector potential A⃗). Again, ob-
serve there is no dependence on φ, which simplifies our calculations. Also, to sim-
plify the calculation of the gradient of V , we just have to know that Taylor expansions
and derivates commute. This means one can take expression (??) and gradient it. At
the end of the day, summing carefully, this yields:

E =−
(

d q0

4πωϵ0r 2
cosθ sin(ω(t − r /c))

)
r̂−

−
(

d q0

4πωϵ0r 2
sinθ sin(ω(t − r /c))+ d q0µ0ω

2

4πr
sinθcos(ω(t − r /c))

)
θ̂.

(3.6.15)

We may think we are done, but we are mistaken. Recall from section 3, that if we
want to simplify our calculations by observing from far away, this implies that terms
∝ 1

r 2 will barely have contribution. This means, that after travelling to far, far away
through this problem, we arrive to the final result:

E =
(
0,−d q0µ0ω

2

4πr
sinθcos(ω(t − r /c)) ,0

)
,

B =
(
0,0,

−µ0q0ω
2d sinθ

4πcr
cos(ω(t − r /c))

)
.

(3.6.16)

3.6.2 Metallic Shells

As always, the first step to find a solution to this problem is to sketch the current
set-up, which looks:

One can derive the potential for this system using Green functions and proper bound-
ary conditions. Also, one can find an explicit expression for this potential in Jackson
(section 2.7, pg. 64), which is:

23Observe that there is no dependence on φ.
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Figure 27: The metallic shells with oscillating potentials.

Φ(r,θ,φ) = 3V±R2

2r 2

r 3(r 2 −R2)

(r 2 +R2)
5
2

cosθ · · · (3.6.17)

Where · · · mean that there are higher order corrections. Recall that r is the observa-
tion position, R stands for the radius of the shells and V± is a short-hand notation for
V0 cosωt .

If we are in the long-wavelength limit (r ≫ω≫ R), it also means that we have r ≫ R,
so we can simplify previous expression by:

Φ(r,θ,φ)|r≫R = 3V±R2

2r 2

r 3(r 2 −��R2)

(r 2 +��R2)
5
2

cosθ · · · =

= ±3V0 cosωt R2

2r 2
cosθ.

(3.6.18)

So we now have an appropriated approximation of the potential for this system. Then
we can start computing the electric dipole. At this stage, we can exploit the fact that
the potential generated by a regular dipole is:
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Φ(r,θ,φ) = 1

4πϵ0

(∑
i

qi

r
+∑

i

p⃗i · x⃗i

r 3
+·· ·

)
. (3.6.19)

So, if we think in terms of being far, far away, we can think of the metallic shell system
with oscillating potentials as dipole generated by two "charges" at the origin. But
here we have no charges! (So the first term in (??) is 0). If we compare (??) with the
simplified potential in the long wavelength limit, we find:

Φ(r,θ,φ) = 1

4πϵ0

(
p r cosθ

r 3

)
= 3V±R2

2r 2
cosθ→

p⃗ = 6πV±R2ẑ.

(3.6.20)

Where, keeping the analogy with the dipole generated by two charges at the origin,
we can ensure a ẑ orientation of this one. This will be the first step to obtain the
radiation field and the radiated power.

E,H fields of a radiating system are given by:

H = ck2

4π
(n⃗ × p⃗)

e i kr

r

(
1+ 1

i kr

)
,

E = 1

4πϵ0

(
k2(n⃗ × p⃗)× n⃗

e i kr

r
+ [

3n⃗(n⃗ · p⃗)− p⃗
](

1
r 3 − i k

r 2

)
e i kr

)
.

(3.6.21)

But in the long wavelength limit, and far far away, these two expressions get simpli-
fied to ( 1

r n will barely contribute):

H = ck2

4π
(n⃗ × p⃗)

e i kr

r
= ·· · = 3ck2

2r ϵ0V R2e i kr sinθφ̂

E = 1

cϵ0
H× n⃗ = ·· · =−3k2

2r V R2e i kr sinθθ̂.
(3.6.22)

So with these two fields we just have to plug them inside the radiated power per solid
angle to get:

dP

dΩ
= 1

2ℜ
[
r 2n⃗ ·E×H∗]= ·· · = 9

8 cϵ0k4V 2R4 sin2θ. (3.6.23)
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So we just have to integrate over the solid angle to get the total radiated power as:

P =
∫

dΩP = 9
8 cϵ0k4V 2R4︸ ︷︷ ︸

A

∫
sin2θ sinθdθdφ,

= 3π

2
cϵ0k4V 2R4.

(3.6.24)

3.6.3 Electrostatic Potential from a Dipole

UNDER CONSTRUCTION

3.6.4 Radiation Interference

1):

We can infer, without knowing too much about radiation, that if we have two types
of dipoles radiating simultaneously, some sort of interference will appear (may be
constructive, destructive...). Since the two sources emit in phase,

dP

dΩ
∝|r̂× (αel ec +αmag )|2 =
= (r̂×αel ec )2 + (r̂×αmag )2 +2(r̂×αel ec )(r̂×αmag )︸ ︷︷ ︸

interference term

(3.6.25)

The interference term can be further simplified using basic vector identities and it
results to be:

(r̂×p) · [r̂× (m× r̂)] = (r̂×p) · [m− r̂(r̂ ·m)] = (r̂×p) ·m = r̂ · (p×m). (3.6.26)

Which is 0 ⇐⇒ p ∥ m.

2):

If we want to check that the time-averaged total power emitted has no interference
contribution, we have to integrate over the solid angleΩ.
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P =
∫

dΩ
dP

dΩ
∝

∫ 2π

0
dφ

∫ π

0
dθ r̂ · (p×m) sinθ

∝ r̂ · (p×m)
∫ π/2

−π/2
dθ sinθ = 0.

(3.6.27)

A zero as big as a cathedral.24 No interference contribution over the whole spaubsce.

3.6.5 Sinusoidal thin Antenna

As always, let’s start with a sketch of the system:

Figure 28: Our simple antenna sample.

a):

Note that the current flows in opposite directions in the top and bottom half of this
antenna (It is born at the centre and goes up and down). As a result, we may write the
source current density using the Heaviside distribution as:

J⃗ (z) = ẑ I sin(kz)δ(x)δ(y)Θ(d/2−|z|), with k = 2π

d
. (3.6.28)

In the radiation zone, the vector potential is given by the well know expression:

24Basic Spanish say when you want to specify that something is quite big/notorious.
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A⃗(⃗x) = µ0

4π

e i kr

r

∫
J⃗
(⃗
x ′)e−i kn̂ ·⃗x ′

d 3x ′,

= ẑ
µ0I

4π

e i kr

r

∫ d/2

−d/2
sin(kz)e−i kz cosθd z.

(3.6.29)

At this point, when integrating, we have to possible options:

• To express the sin in terms of exponentials, rephrase, integrate and compose
trigonometric functions again or...

• To perform a change of variables and use
∫ π
−π sin(z)e−i azd z = 2i sin(πa)

a2−1
.

All in all the result should be the same. Let’s perform the first choice. Since the source
current is odd under z →−z, this integral may be written as:

A⃗ =−ẑ
iµ0I

4π

e i kr

r

∫ d/2

0
2sin(kz)sin(kz cosθ)d z =

=−ẑ
iµ0I

4π

e i kr

r

∫ d/2

0
[cos((1−cosθ)kz)−cos((1+cosθ)kz)]d z =

=−ẑ
iµ0I

4π

e i kr

kr

[
1

1−cosθ
sin((1−cosθ)kz)− 1

1+cosθ
sin((1+cosθ)kz)

]d/2

0
=

=−ẑ
iµ0I

2π

e i kr

kr

sin(πcosθ)

sin2θ
.

(3.6.30)

To compute H in the radiation zone, recall that ∇⃗ ∼ i kn̂, so:

H⃗ = i k

µ0
n̂ × A⃗ =−φ̂ I

2π

e i kr

r

sin(πcosθ)

sinθ
. (3.6.31)

where we used n̂ × ẑ ≡ r̂ × ẑ =−φ̂sinθ. Then, the radiated power:

dP

dΩ
= r 2

2
n̂

(
E⃗ × H⃗

)= r 2

2
n̂

(
Z0(H⃗ × n̂)× H⃗

)
︸ ︷︷ ︸

in the radiation zone.

. (3.6.32)
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Using some identities, this results into a radiated power of the form:

dP

dΩ
= Z0r 2

2
|H⃗ |2 = Z0|I |2

8π2

sin2(πcosθ)

sin2θ
. (3.6.33)

b):

To compute the total radiated power we just have to integrate the previous result by
the solid angle so:

P =
∫
Ω

dP

dΩ
dΩ= Z0I 2

8
. (3.6.34)

c):

This part of the problem is more pure calculations. We need the definition of the
dipoles and quadropoles, given by:

p⃗ =
∫

x⃗ ρ d 3x, m⃗ = 1

2

∫
x⃗ × J⃗d 3x, Qi j =

∫ (
3xi x j − r 2δi j

)
ρd 3x. (3.6.35)

To extract the charge density, we can use the equation of state ∇⃗ · J +∂tρ = 0. Also,
recall that J⃗ (t , x⃗) = J⃗ (⃗x)e−iωt , so:

ρ = 1

iω
∇⃗ · J⃗ = 1

iω

d J⃗

d z
=− i I

c
cos(kz)δ(x)δ(y)Θ(d/2−|z|) (3.6.36)

where we used ω= ck. The electric dipole moment is then:

p⃗ =
∫

x⃗ρd 3x =
∫

d x d y d z (xx̂ + y ŷ + zẑ)
i I

c
cos(kz)δ(x −0)δ(y −0) =

=−ẑ
i I

c

∫ d/2

−d/2
z cos(kz)d z = 0

(3.6.37)

Of course, a simple symmetry argument under z →−z demonstrates that this electric
dipole must vanish. The magnetic dipole moment also vanishes since:
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m⃗ = 1

2

∫
x⃗ × J⃗d 3x = same story as before... = I

2

∫ d/2

−d/2
z⃗ × [ẑ sin(kz)]d z = 0 (3.6.38)

We are left with an electric quadrupole moment as:

Qi j =
∫ (

3xi x j − r 2δi j
)
ρd 3x. (3.6.39)

That gives us the expected Qi j = 0 and:

Qxx =Qy y =−1
2Qzz =− I

i c

∫ d/2

−d/2
(3x2

i −
∑

x2
i )δ(x)δ(y)cos(kz)d z =

= −I d 3

i cπ2
.

(3.6.40)

3.6.6 Scattering in Solid Sphere

We first have to understand what the set-up. Let’s observe the following sketch.

Figure 29: A sphere being hit by a plane wave.

Then, let’s proceed with the different parts of this problem.
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1):

Assuming that conductivity σ is infinite, we then just realise that there will be no
fields inside the sphere, hence no current J inside this one. In the same spirit as in the
electric case, one can think in terms of a "magnetic" potential φM , whose divergence
will generate the magnetic field B around the sphere surface. In order to find this
potential, let’s use the multipole expansion of it and some boundary conditions. We
know that the most general potential expansion looks like:

Φ(r,θ,φ) =
∞∑
ℓ=0

(
Aℓr ℓ+ Bℓ

r ℓ+1

)
Pℓ(cosθ). (3.6.41)

And what are the boundary conditions we know? That the potential on the surface
should be 0 and −B0 z25 when r ≫ R. Then, the second boundary condition help us
fix the first linear coefficient as:

φM |r≫R =−B0r cosθ =
∞∑
ℓ=0

Aℓr ℓ+ Bℓ

r ℓ+1︸ ︷︷ ︸
r≫R

Pℓ(cosθ) =,

−B0r cosθ =
∞∑
ℓ=0

(
Aℓr ℓ

)
Pℓ(cosθ) = A1 r 1 cosθ =,

B0 = A1.

(3.6.42)

There is a missing boundary condition that used now can shed some light on the sub-
leading coefficient of this expansion. Recall that for a perfect conducting spherical
surface one has B⊥ = 0 when r = R. And recall that −∇⃗φM = B, so:

0 =−∂r |r=R =−∂r

(
−B0 r cosθ+

∞∑
ℓ=0

Bℓ

r ℓ+1
Pℓ(cosθ)

)
=

−B0 cosθ =
∞∑
ℓ=0

(ℓ+1)RℓBℓ

R2ℓ+2
Pℓ(cosθ) =

B1 =−R3B0

2
.

(3.6.43)

25the field carried from the plane wave, but reflected.
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So the first leading order of the "magnetic" potential are:

φM (r,θ) =−B0 r cosθ
(
1+ R3

2r 3

)
→

φM (z) =−B0 z
(
1+ R3

2r 3

)
.

(3.6.44)

Which will result into the following magnetic field:

B =−∇⃗φM = B0

(
1− R3

2

(
3r̂ z2−1

r 3

))
. (3.6.45)

2):

The absorption cross section is the ratio between the power loss and the intensity of
the plane wave. Let’s compute the power loss by:

Ploss

d a︸︷︷︸ area

= 1

2σδ

∣∣∣n̂ × B
µ

∣∣∣2 =

= 1

2σδ

∣∣∣r̂ ×B0

(
1− R3

2

(
3r̂ z2−1

r 3

))∣∣∣2 =

= B 2
0

2µ2

(
1+ R3

2r 3

)2
sin2θ φ̂.

(3.6.46)

So integrating this power loss over the whole area of the sphere we get:

P =
∫

Area

B 2
0

2µ2

(
1+ R3

2r 3

)2
sin2θR2 sinθdθdφ=

= 3B 2
0 R2π

σδµ2
.

(3.6.47)

We only need to know the intensity of the incident plane wave. One can obtain this
from the strength of both fields carried by the wave, which is given by the energy
average of a wave, as:
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〈S〉 = I = ϵ0
2 |E|2 = 1

2µ0
|B0|2 (3.6.48)

Then, the cross section is finally given by:

σcross = Ploss

I
= 6R2π

σδµ
. (3.6.49)

Observe that expression (??) does not depend on the fields that the wave carries, but
the properties of the object is scattered on. In this case, the radius, the conductivity
and the skin depth..ubs.

3.6.7 Aperture (Science)

UNDER CONSTRUCTION

3.6.8 Born Scattering from a Dielectric Cube

1):

The first thing we have to notice in order to be able to approximate "a la Born" is
that E inside a dielectric material has to be very similar to the incident electric field
E. If this then the case, we know that J ∝ E. In order to simplify the fore coming ex-
pression, let us write q = k−k0 as the difference between the incoming and outgoing
scattering wave vectors (ω= ck = ck0). Then, the approximated cross section is given
by:

dσBorn

dΩ
=

(
k2

0 V χe

4π

)2 ∣∣k̂× Ê0
∣∣2

∣∣∣∣∫
V

d 3r ′ exp
(
i q · r′

)∣∣∣∣2

. (3.6.50)

Where χ is the susceptibility of the material of the cube. The pesky integral we have
to compute goes as:

∫
V

d 3r ′ exp
(
i q · r′

)= ∫ a

0
d x ′ exp

(
i qx x ′)×∫ a

0
d y ′ exp

(
i qy y ′)×∫ a

0
d z ′ exp

(
i qz z ′) .

(3.6.51)

But we have to realise the following technical computation.
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∫ a

0
d x ′ exp

(
i qx x ′)= e i qx x

i qx
|a0 =

= ei qx a

i qx
−1︸ ︷︷ ︸

extract 1/2 of the exp

= ei qx a/2

i qx
(e i qx a/2 −e−i qx a/2︸ ︷︷ ︸

=sin···
) =

= 2e(−i qx a/2) sin
(
qx a/2

)
qx a/2

(3.6.52)

Which works exactly the same for y, z components. Then, the cross section looks like:

dσBorn

dΩ
=

(
k2

0V χe

4π

)2 ∣∣k̂× Ê0
∣∣2

[
8

sin
(
qx a/2

)
qx a/2

sin
(
qy a/2

)
qy a/2

sin
(
qz a/2

)
qz a/2

]2

(3.6.53)

2):

Now we have to show that σ ≈ 1
4 k2a4χ2 when ka ≫ 1. Let k0 = ẑ and E0 = x̂. When

ka ≫ 1, near-forward scattering dominates and
∣∣k̂× Ê0

∣∣ ≈ ∣∣k̂0 × Ê0
∣∣ = 1. The sketch

below shows that, in the same limit, the area element k2Ωk is essentially the area
d qxd qy of a circular disk perpendicular26 to k0:

dSk = k2dΩk ≈ d qxd qy . (3.6.54)

Figure 30: The important k to give an accurate approximation.

26Basically, try to imagine the to-be-scattered wave as a spherical one and the surface of this that
will interact with the cube is given such that there is not too much difference of k in z direction.
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Therefore, in the ka ≫ 1 limit when qz → 0, the fact that k0 = k means that:

lim
ka≫1

σBorn = lim
ka≫1

∫
dΩk

dσBorn

dΩk
≈ lim

ka≫1

(
kV χe

4π

)2 ∫
d qx

sin2
(
qx a/2

)(
qx a/2

)2

∫
d qy

sin2
(
qy a/2

)(
qy a/2

)2 .

(3.6.55)

Here we have to be careful. The integrals are mainly dominated by contributions
when qx , qy ∼ 1/a so the limits can be extended to ±∞27with little loss of accuracy.
Therefore,

lim
ka≫1

σBorn = k2a4χ2
e

4π2

[∫ ∞

−∞
sin2 u

u2

]2

≈ k2a4χ2
e

4
. (3.6.56)

3):

From the definition of the cross section and the result of part (1),

Erad

E0
≈ 1

r

√
dσ

dΩ
≈ k2a3χe

4πr

∣∣∣∣∣sin
(
qx a/2

)
qx a/2

sin
(
qy a/2

)
qy a/2

sin
(
qz a/2

)
qz a/2

∣∣∣∣∣ . (3.6.57)

The absolute-value term gets no larger than one. Therefore, with r = a, the weak
scattering criterion is indeed

1 ≫ k2a2χe =σBorn/a2χe . (3.6.58)

3.6.9 E: Two Antennas Sitting Together

1):

As almost all radiation problems, let’s start computing the different dipole momenta
for each of the components of the system. Recall that when integrating we only care
about the spatial components. The magnetic dipole for the loop antenna is:

m⃗loop = 1
2

∫
x⃗ × J⃗ (⃗x)d 3x = I ×AreaS2 · n̂ = I0πa2ẑ. (3.6.59)

27The peak of contribution happens at 1/a for the momenta with the remaing values of qi barely
contributing to the situation. Expanding the integration to all R we simplify our life.

102



Where we shall recall that for a close loop we can use the previous magnetic dipole
simplification. Also, the dipole will be pointing perpendicular to the surface of the
area. For the electric dipole of the straight antenna we find:

P⃗ant =
∫

x⃗ ·ρ(⃗x)d 3x =
∫ 0

−a
−iλ0 z d z +

∫ a

0
iλ0 z d z = iλ0 a2ẑ. (3.6.60)

2):

Assuming that the emitted wavelength is greater than the size of the system and that
we are far far away of the source, we can just drop terms with a 1

r n dependence in
the vector potential expression A. Also, as we have two antennas, whose dipoles are
aligned along the z-axis, the total vector potential will be no more than a linear com-
bination of each of the parts as:

Atot al = Aant (⃗x)+Aloop (⃗x) =

= i kµ0

4π
(r̂ ×m⃗)

e i kr

r
− iµ0ω

4π
p⃗

e i kr

r
=

= iµ0ωe i kr

4π r

(1
cπI0a2r̂ × z⃗ − iλ0a2ẑ

)
.

(3.6.61)

We will leave this expression for future convenience in the computation.

3):

Same principle as before, E and B will have contributions from both antennas. In this
case, let’s start with:

Htot = Hant +Hloop =

= e i kr k2

4πr

(
c(r̂ × p⃗)− (r̂ ×m⃗)× r̂

)= use vector identities =

= e i kr k2

4πr

c(r̂ × ẑ) iλ0a2 −πI0a2ẑ −πI0a2 cosθ r̂︸ ︷︷ ︸
m⃗·r̂=cosθ

 .

(3.6.62)

Then it is easy to consider that B = µ0Htot . For the electric field, as we are in the
radiation zone, we know that:
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Etot = Z0Htot × r̂ =

=
√

µ0
ϵ0

k2 e i kr

4πr

(
c iλ0a2(r̂ × z⃗)× r̂ +πI0a2r̂ × ẑ −���r̂ × r̂

)=
= Again, use some vector identities to simplify... =

= −k2

4πr

√
µ0
ϵ0

e i kr

r
(i cλ0a2(ẑ − r̂ )).

(3.6.63)

Then, finally, we are prepared to compute the power emitted per unit of solid angle...

4):

So we know it expression as:

〈
dP

dΩ

〉
= 1

2
ℜ[

r 2r̂ · (E⃗ × H⃗∗)
]=

= 1

2
ℜ

[
r 2r̂ ·

(√
µ0
ϵ0

(
H⃗ × r̂

)× H⃗∗
)]

=

= use vector identities =

= 1

2
ℜ

[
r 2

√
µ0
ϵ0

H⃗ · H⃗∗)
]

.

(3.6.64)

We can suspect what is about to come. One has to compute the conjugated square
of expression (??). Grab a coffee, keep calm and compute with ease and patience. A
result of the following form should pop up as:

〈
dP

dΩ

〉
=

√
µ0
ϵ0

k4

16π2

c2λ2
0a4 (⃗r × ẑ)2︸ ︷︷ ︸

1−(⃗r ·ẑ)2

+2π2I 2
0 a4(1+ ẑ · r⃗︸︷︷︸

−cosθ

)

 . (3.6.65)

We are asked to give the answer as a function of the angle θ. In order to simplify
further the previous expression, recall that cosθ = 1−2sin2θ/2. With this in mind,
the final result looks like:
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〈
dP

dΩ

〉
=

√
µ0
ϵ0

k4a4

32π2

(
c2λ2

0 sin2θ+4π2I 2
0 sin2 θ

2

)
. (3.6.66)

3.6.10 E: One... Err, Two Antennas

UNDER CONSTRUCTION

3.6.11 E : Who bent my Antenna?

1):

This first part of the problem is just a warm up for what is about to come. Let’s start
computing the magnetic dipole. Careful here; We cannot assume a whole curved
antenna, as there is a gap at π, that we shall not integrate over. It is useful to move to
cylindrical coordinates when computing in this exercise. Then we have:

m⃗ = 1
2

∫
d 3x x⃗ × J⃗ = 1

2

∫
d 3x (r,α,0)× (0, I ,0) =

= I0a2x̂
∫ −π

π
dα(π−|α|) =π2I0a2x̂.

(3.6.67)

To find the electric dipole we need first to know the charge density. This one can be
extracted from the continuity equation as:

∇⃗ · J⃗ +∂tρ = 0 →λ= −i
aω∂α(I0(π−|α|)) (3.6.68)

Which depends on the value of α (Recall that it is fed with a RF signal at α= 0). This
means:

λ=
{ i

aω I0 0 <α<π,
−i
aω I0 −π< x < 0.

(3.6.69)

By symmetry p⃗ is in the ẑ direction as:

p⃗ =
∫

d 3x λ ẑ = 2i
ω

I0aẑ
∫ π

0
dαsinα= 4i

ω
I0aẑ. (3.6.70)

2):

105



At this point we could compute each of the contributions for each dipole to the vec-
tor field... Or we can be intelligent and save some time and brain cells by doing the
following. We know that the vector potential is:

A(⃗x)p =− iµ0

c=kω︷︸︸︷
ω

4π
p⃗

e i kr

r
,

A(⃗x)m = i kµ0

4π
r⃗ ×m⃗

(
1− 1

i kr

)
e i kr

r
.

(3.6.71)

So the sum of both of them in the radiation zone (a.k.a big r so drop terms ∝ 1
r ) will

yield the following result:

A(⃗x) = i kµ0

4π

(⃗
r ×m⃗ − cp⃗

) e i kr

r
= iµ0

4π
I0ka

(
π2ka(r̂ × x̂)−4i ẑ

) e i kr

r
. (3.6.72)

Observe that we have left the vector products as a formal expression. This has been
done so we can exploit its identities later. With this expression in our power, is time
to compute the fields.

3):

The fields are given by:

B = ∇⃗× A⃗ =,

= µ0

4π
I0ka

(
π2kar̂ × (r̂ × x̂)+4i r̂ × ẑ

) e i kr

r
.

(3.6.73)

And the Electric field is (in the radiation zone):

E = c2 i
ω ∇⃗× B⃗ =,

= cµ0

4π
I0ka

(
π2ka(x̂ × r̂ )+4i r̂ × (ẑ × r̂ )

) e i kr

r
.

(3.6.74)

4):
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Finally, we have all the tools to compute the power emitted by solid angle. Recall that
this is given by:

dP

dΩ
= r 2

2µ0
r̂ ·ℜ[

E×B∗]= radiation zone = r 2

2µ0c

(
E⃗ · E⃗∗)

. (3.6.75)

This forces us to carefully compute the set of vector products in the electric field.
With some calm (and vector identities) we can find that:

|(π2ka(x̂ × r̂ )+4i r̂ × (ẑ × r̂ )
) |2 =π4k2a2(x̂ × r̂ )(x̂ × r̂ )+16(ẑ − r̂ (r̂ · ẑ))2 =

=π4k2a2(1− (x̂ · r̂ )2)+16(1− (r̂ · ẑ)2) =,

=π4k2a2(1− (sinθcosφ)2)+16(1− (cosθ)2).

(3.6.76)

Plugging this back into expression (??) we find:

dP

dΩ
= cµ0

32π2
(I0ka)2 (

π4k2a2(1− (sinθcosφ)2)+16sinθ2)
)

. (3.6.77)

3.7 Covariant Formalism of Electrodynamics

3.7.1 Getting familiar with four-vectors

1)

What is then ∂µxµ? The answer is given in the statement itself; A scalar. A function. In
this course we are going to indices up (xµ) and down (xµ) to denote the components
of objects like vectors, forms and tensors. Whenever we see two indices of the same
form repited up and down, this means that we are using the Einstein’s summation
convenction. This means that:

∂µxµ =
3∑

µ=0

∂

∂xµ
xµ = ∂

∂x0
x0 + ∂

∂x1
x1 + ∂

∂x2
x2 + ∂

∂x3
x3. (3.7.1)

To see that this is a Lorentz scalar, we just need to check that it transforms as one. In
this case we just need to know how each part of this object transforms. We know that
forms Lorentz transform as:

∂µ → ∂xα

∂xµ∂xα
. (3.7.2)
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And the vector entries xµ do as:

xµ → ∂xµ

∂xα
xα (3.7.3)

So, the whole object (??) transforms as:

∂µxµ → ∂2xα

∂xµ∂xα
∂xµ

∂xα
xα = ∂αxα. (3.7.4)

As the repeated indices are summing, we can rewrite them again to be µ. When two
indices are summing in this way, it is said that they are dummy indices, so they can be
replaced by any other letter. As we see, the scalar transforms according to Lorentzian
transformations.

2)

To understand this we just have to check the dimension of the objects. A Fµν (two-
tensor) has D×D entries28. But in the case of something of the form

∑
µν aµbν we just

have a dimension of 2D entries.

3)

a) In this section we have to abuse of the (anti)symmetry of the given tensors. There
is nothing that does not allow us to do the following:

Sµν = 1
2 Sµν+ 1

2 Sµν,

= 1
2 Sµν+ 1

2 Sνµ︸︷︷︸
symmetric

. (3.7.5)

If we apply a Lorentz transformation on both sides of the equation we find:

Λ
µ
αΛ

ν
βSµν = 1

2Λ
µ
αΛ

ν
βSµν+ 1

2 ΛναΛ
µ

β
Sνµ︸ ︷︷ ︸

µ,ν dummy Change.

,

= 1
2Λ

µ
αΛ

ν
βSµν+ 1

2Λ
µ
αΛ

ν
βSµν,

=ΛµαΛνβSµν.

(3.7.6)

28This is a regular property of the tensor product notation.

108



It can be similarly done for the antisymmetric case.

b)

We want to prove that the product of an antisymmetric and a symmetric tensors is 0.
We could define generic ones and compute term by term to see that they cancel... or
we can apply so facts, so we can reduce the amount of work. Let’s aim for the second
option. We can exploit the (anti)symmetry of the tensors as:

SµνAµν → −SνµAνµ. (3.7.7)

But we know that when indices are repited, that means that they are dummy... So we
can replace them on convenience. Let’s interchange then µ↔ ν, so.

SµνAµν =−SµνAµν. (3.7.8)

As everything is contracted (a.k.a all the indices are summed) we know that the result
is a scalar. Which is the only scalar that equal to its opposite? Zero.

3.7.2 Covariant formalism of Electrodynamics

a)

In order to solve this problem, we first require the explicit expression for the electro-
magnetic field tensor. This is given by:

Fµν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 (3.7.9)

Observe that the expression (??) is given in S.I. units. In this case, we can relate each
of the components of the tensor with its entries such that:

F 0i =−E i , F i j = ϵi j k Bk , Fµν =−Fνµ. (3.7.10)

As we want to get used to this notation (which can be new to some of you) let explic-
itly write all terms when summing over the Einstein’s convention for the sumation.
In this case it goes as:
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−FµνFµν =−
3∑

µ=0

3∑
ν=0

FµνFµν =

=− (F00F 00 +F01F 01 +F02F 02 +F03F 03+
+F10F 10 +F11F 11 +F12F 12 +F13F 13+
+F20F 20 +F21F 21 +F22F 22 +F23F 23+
+F30F 30 +F31F 31 +F32F 32 +F33F 33).

(3.7.11)

So far, we know the aspect of the entries Fµν, but we do not know how the entries
of the tensor with two indices down (Fµν) look like. We can compute them using the
metric of this space. In this case, we are working on a Minkowski space, so recall then:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.7.12)

So "lowering" the indices will be a process of the form:

Fαβ = ηαµηβνFµν. (3.7.13)

One can also reduce the problem to a matrix multiplication problem, making use of
the fact that F ′ = ηT Fη, where ηT is the transpose metric matrix. This is not recom-
mendable, as in the future we will be working with objects with more indices which
does not have a matrix representation". The index formalism is powerful enough
with any tensor that will appear during this course. If one performs then the calcula-
tion in (??), it can be found that:

−FµνFµν = 2(E⃗ 2 − B⃗ 2). (3.7.14)

One could perform the same computation for ϵµνρσFµνFρσ. Or we can make use of
the properties of the dual tensor (Eq 11.140 Jackson). The dual tensor "interchanges"
the position of the entries E i and B i such that:

E i →−B i , B i → E i . (3.7.15)
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In this case, we can interchange the electric field and magnetic field components
appearing in ?? as:

ϵµνρσFµνFρσ =∗FρσFρσ =−E⃗ · B⃗ . (3.7.16)

b)

How can we show that Maxwell equations are identical to the Bianchi identity? As we
are relating two equations to one identity, this means that we can extract two possible
forms of the identity that will have a similar appearance to Maxwell’s. It will be useful
to use relations (??) to "massage" the appearance of the entries.
Let’s start the second Maxwell’s. It can be written as:

∇⃗ · B⃗ = ∂i B i = ∂

∂x1
B 1 + ∂

∂x2
B 2 + ∂

∂x3
B 3. (3.7.17)

Here we will use relations (??) to express B in terms of F i j entries. This means that B i

can be express as:

Fi j = ϵi j k B k → ϵi j k Fi j = ϵi j kϵi j k︸ ︷︷ ︸
1

B k → ϵi j k Fi j = B k . (3.7.18)

So the second Maxwell’s can be written as:

∂i B i = ∂i (ϵk j i Fk j ) = ∂i (−ϵi j k (−F j k )) = ϵi j k∂i (F j k ) = 0. (3.7.19)

Where ϵi j k∂i (F j k ) represent the non repeating permutations of each of the entries for
i , j ,k.

To prove the equivalence of the first Maxwell’s equation to the Bianchi identity, as-
sume that t is the zero-th entry in Bianchi such that:

∂0Fνλ+∂νFλ0 +∂λF0ν = 0. (3.7.20)

But we know that F 0i = E i . Then, using antisymmetry of the electromagnetic tensor
we have:

∂0Fνλ −∂νEλ+∂λEν︸ ︷︷ ︸
j-th compo. of cross product

= 0. (3.7.21)
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So we just have to massage what Fνλ is. We know from relations(??) that it corre-
sponds to Fi j =−ϵi j k B k . So we have:

∂µFνλ+∂νFλµ+∂λFµν = ∂0Fνλ+∂νFλ0 +∂λF0ν =
∂0(−ϵkνλB k )−∂νEλ+∂λEv = ∂0(−ϵkνλB k )− (⃗∇× E⃗)k =

∂t B k + (⃗∇× E⃗)k = ∂t B⃗ + (⃗∇× E⃗) = 0.

(3.7.22)

c)

We are given T µν = Fµ
ρ +Fρν− 1

4 gµνFρσFρσ. This means that from the left hand side

(LHS) we can compute 3 different options: T 00,T 0i ,T i j .

• T 00

T 00 = F 0
ρFρ0 − 1

4
g 00(FρσFρσ) =−g 00F0ρF 0ρ− 1

4
(−1)(FρσFρσ) =

= E⃗ 2 − 1

2
(E⃗ 2 − B⃗ 2) = 1

2
(E⃗ 2 + B⃗ 2).

(3.7.23)

• T 0i

T 0i = F 0
ρFρi + 1

2
g 0i︸︷︷︸

by symmetry is 0.

· · · =

= g 00F0ρFρi =−(E j Bk −Ek B j ) = (E⃗ × B⃗)i = Si
poynt

(3.7.24)

• T i j :

T i j =−g i j FiρF jρ− 1

4
g i i (−2(E⃗ 2 − B⃗ 2)) =

=−g i j Fi 0F j 0 − g i j Fi k F j k + 1

2
g i j ((E⃗ 2 − B⃗ 2)) =

=−E i E j + (B i B j )− 1

2
(E⃗ 2 − B⃗ 2)δi j .

(3.7.25)

d)

To show that ϵ is invariant under Lorentz transformations, we have to consider that
it is not a tensor, but a pseudo-tensor. When transofrmed, it should be multiplied by
the inverse of the Jacobian of the transformation; In our case, the transformation has
to do with the metric gµν, so det g =−1. This metric is Lorentzian, so no problem.
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There is a nice property of tensors that goes as:

ϵµ...ζAµ
a . . . Aζ

z = det A ϵa...z . (3.7.26)

We can apply this to our case such that:

ϵ0123 =Λ0
αΛ

1
βΛ

2
γΛ

3
δϵ
αβγδ = detΛ︸ ︷︷ ︸

It is 1

ϵαβγδ. (3.7.27)

As the determinant of Lorentzian transformations is equal to 1, we have just proved
it.

3.7.3 Lorentz Transformations for the Electromagnetic Field

a) We are asked to show the general Lorentz transformation of the electric and mag-
netic fields. As a warm-up for this problem, it is recommendable to check first a sim-
pler case; Let’s assume we only move along the x axis. The Lorentz transformation
of the electromagnetic tensor (which includes E⃗ and B⃗) can be thought as a matrix
calculation of the form:

F ′ =ΛFΛt , (3.7.28)

WhereΛ is the boost matrix in the x direction. Then:

F ′ =


γ −γβ 0 0

−γβ 0 0 0
0 0 1 0
0 0 0 1




0 −E∥ −E⊥ −E⊥
E∥ 0 −B⊥ B⊥
−E⊥ B⊥ 0 −B∥
−B⊥ −B⊥ B∥ 0



γ −γβ 0 0

−γβ 0 0 0
0 0 1 0
0 0 0 1

=

=


0 −E∥ −γ(E⊥−βB⊥) −γ(E⊥+βB⊥)

E∥ 0 γ(βE⊥−B⊥) γ(βE⊥+B⊥)
γ(E⊥−βB⊥) −γ(βE⊥−B⊥) 0 −B∥
γ(E⊥+βB⊥) −γ(βE⊥+B⊥) B∥ 0



(3.7.29)

Where we have used the fact that 1−β2 = γ−2. One can see then that:
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E ′
∥ = E⊥, E ′

⊥ = γ(E⊥+β×B⊥),

B ′
∥ = B⊥, B ′

⊥ = γ(B⊥−β×E⊥).
(3.7.30)

But this was for a specific case. How does a general Lorentz transformation looks like?

To see how a general transformation would look like, we need the more general ex-
presion of the boost matrix. Λ. This is:

Λ
µ
ν =


−γ −γβx −γβy −γβz

−γβx 1+ (γ−1) vx vx
v2 (γ−1)

vx vy

v2 (γ−1) vx vx
v2

−γβy (γ−1)
vx vy

v2 ) 1+ (γ−1)
vy vy

v2 (γ−1)
vy vz

v2

−γβz (γ−1) vx vz
v2 (γ−1)

vz vy

v2 1+ (γ−1) vz vz
v2

 . (3.7.31)

So, as life is short and we want to wisely use our time, let’s use the indices notation to
be more productive with our time. Recall:

Fµν′ =ΛµåΛνβF åβ. (3.7.32)

So the only thing that we have to do is to calculate each of the entries of Fµν. This
goes as:

• F 00′

F 00′ =Λ0
0Λ

0
βF 0β+Λ0

1Λ
0
βF 1β+Λ0

2Λ
0
βF 2β+Λ0

3Λ
0
βF 3β,

=Λ0
0Λ

0
0F 00 +·· ·+Λ0

1Λ
0
0F 10 +·· ·+Λ0

2Λ
0
0F 20 +·· ·+Λ0

3Λ
0
0F 30,

= Observe thatΛ commutes with each other and F i j is antisymmetric

= 0.
(3.7.33)

• F 0i ′

F 0i ′ =Λ0
0Λ

i
0F 00 +·· ·+Λ0

1Λ
i
0F 10 +·· ·+

+Λ0
2Λ

i
0F 20 +·· ·+Λ0

3Λ
i
0F 30 +·· · =

=(γΛi
1 +γβxΛ

i
0)(−Ex)+·· ·+ (γΛi

3 +γβzΛ
i
0)(−Ez)+

+ (−γβyΛ
i
3 +γβzΛ

i
2)(Bx)+·· ·+ (−γβxΛ

i
2 +γβyΛ

i
1)(Bz).

(3.7.34)
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Terms of the form F i j are left as an exercise for the reader29. One can see in eq(??)
that the presence of the magnetic field entries corresponds to the cross products that
are present in expression (??). So a general boost will have the same terms as in that
expression.

b)

In order to argue what happens to the angle between E⃗ and B⃗ , recall that θ is given
by:

E⃗ · B⃗ = |E⃗ ||B⃗ |cosθ. (3.7.35)

So the cosine will behave like:

cosθ = E⃗ ·B⃗
|E⃗ ||B⃗ | =

E∥B∥+E⊥B⊥√
E 2
∥+E 2

⊥
√

B 2
∥+B 2

⊥
. (3.7.36)

Which after boosting looks:

cosθ′ = E⃗ ′·B⃗ ′
|E⃗ ′||B⃗ ′| =

E∥B∥+γ2(E⊥+β×B⊥)(B⊥−β×E⊥)√
E 2
∥+γ2(E⊥+β×B⊥)2

√
B 2
∥+γ2(B⊥−β×E⊥)2

. (3.7.37)

It can be easily seen from the previous expression that θ between E⃗ ′ and B⃗ ′ will
change respect to its previous configuration. This change will depend on the velocity
on which the system moves respect to a specific frame.

3.7.4 Three Observers. "One Field"

1):

Observer A evaluates the two electromagnetic field invariants and finds the values

E ·B =α2/c, E 2 − c2B 2 =α2 − c2 (
α2/c2 +4α2/c2)=−4α2. (3.7.38)

Observer B evaluates the same invariants and finds E′ ·B′ = E ′
xα/c +B ′

yα and

29This is more common to be found in a mathematics textbook. Surprise! I was not in the mood of
typing that entry...
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E ′2 − c2B ′2 = E ′2
x +α2 − c2

(
2α2/c2 +B ′2

y

)
,

= E ′2
x − c2B ′2

y −α2.
(3.7.39)

Setting these invariants equal in the two frames gives:

E ′
x + cB ′

y =α,

E ′2
x − c2B ′2

y =−3α2.
(3.7.40)

Which after solving, we find E ′
x =−α and B ′

y = 2α/c. Therefore:

E′ = (−α,α,0), B′ = (α/c,2α/c,α/c). (3.7.41)

2):

The fields transform according to:

E′
∥ = E∥, E′

⊥ = γ(E+β× cB)⊥
B′
∥ = B∥, cB′

⊥ = γ(cB−β×E)⊥
(3.7.42)

Therefore,

E′′ =−αx̂+γ
[

E′
⊥+ v x̂×

(
B ′

y ŷ+B ′
z ẑ

)]
=

=−αx̂+γ
[

E′
⊥+ vB ′

y ẑ− vB ′
z ŷ

]
=

=−αx̂+γ(α− vα/c)ŷ+2γvα/c ẑ =
=−αx̂+γα(1−β)ŷ+2γαβẑ.

(3.7.43)

Similarly we find for B,

B′′ =α/c x̂+γ
[

B′
⊥− (

v/c2) x̂×
(
E ′

y ŷ+E ′
z ẑ

)]
=

=α/c x̂+γ
[

B′
⊥− (

v/c2)E ′
y ẑ+ (

v/c2)E ′
z ŷ

]
=

=α/c x̂+2γα/cŷ+γ(
α/c − vα/c2) ẑ =

=α/c x̂+2γα/cŷ+γα(1−β)/c ẑ.

(3.7.44)
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3.7.5 Transformation of Force

a)

From Gauss law, the electric field inside the electron column is given by:

E = ρ0r

2ϵ0
r̂ r < a. (3.7.45)

Therefore the force on a electron at r < a is

F =−eqE(r ) =−eρ0r

2ϵ0
r̂. (3.7.46)

b)

In the laboratory frame of the observer,

E⊥ = γ(
E′−v×B′)

⊥ ,

E′
∥ = E∥,

B⊥ = γ(
B′+ (

v/c2)×E′)
⊥ ,

B′
∥ = B∥.

(3.7.47)

There is no magnetic field in the rest frame of the electrons and the rest-frame electric
field (computed in previous part of the exercise) is entirely transverse. Therefore, the
force we are looking for is:

F =−eE =−e[E+v×B] =−eγE′
⊥−ev×γ[(

v/c2)×E′
⊥
]=−eE′

⊥
γ

. (3.7.48)

3.7.6 A Long Wire Moving Fast

a)

The first part of this calculation is something easy from elementary electromagnetism.
We are in the rest frame K ′. For simplicity, assume that the wire is moving along
z direction. In this case we are moving in the same reference system as the wire is
moving, so we will not see any charge with velocity different than 0. As there are no
moving charges, B⃗ ′ = 0. For the electric field we have:
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∫
cylinder

E⃗ ′ · d⃗ s = q
ϵ0

→ E⃗ ′ = q
2πr L r̂ . (3.7.49)

And now, we use the Lorentz transformation of the fields to move them to the labo-
ratory frame. Recall that they look like:

E⃗ = γ(E⃗ ′+β× B⃗ ′)− γ2

γ+1
β⃗(β⃗ · E⃗ ′),

B⃗ = γ(B⃗ ′−β× E⃗ ′)− γ2

γ+1
β⃗(β⃗ · B⃗ ′).

(3.7.50)

So:

E⃗ = γE⃗ ′ = γ q
2πr L r̂ ,

B⃗ =−γβ⃗× E⃗ ′ =−γ qβ
2πr L θ̂.

(3.7.51)

b)

Now we have to derive J and ρ in both frames. Let’s start from the beginning. In a
rest frame (so we are co-moving with the wire), we know that there is an equation of
state for the current that says:

∇⃗ J⃗ +∂tρ = 0. (3.7.52)

So, basic electromagnetism problem. If we know the electric density, we know the
current. We know that the charge density is given by:

ρ = q
L , but r ′

charge = 0 → ρ = q δ(r ′−0)
L . (3.7.53)

Where we have accounted for the location of the charge along the wire in the z-axis.
As we can see in eq (??), there is no time dependence, so J⃗ = 0, as expected. Things
completely change if we move to the laboratory frame. Now the wire is moving re-
spect to the observer with velocity v⃗ . It is better to use the four-vector formalism in
this frame, as:
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Jµ
′ = (cρ′, J i ′) = (c q δ(r ′−0)

L ,0). (3.7.54)

To obtain the laboratory frame data, we just have to boost our result in the direction
z as:

Jν =Λνµ Jµ
′
,

J 0 =Λ0
0 J 0 = γJ ′0,

J i =Λ3
µ Jµ

′ =−γβJ 0′ .

(3.7.55)

Where we have to notice that r ′ = r in both frames, as it direction is perpendicular to
that of motion of the system. The four-current ends up to be:

Jµ =
(

cγqδ(r−0)
L ,0,0,−γvz qδ(r−0)

L

)
. (3.7.56)

c)

This section is basic electromagnetism again. We just have to obtain E⃗ and B⃗ in the
laboratory frame from the charge and current densities in the previous section.

For E⃗ we just have to observe that J 0′ = γJ 0. The only difference is how the charge
densities relate between frames. So we can conclude that

E⃗ = γE⃗ ′ = γq
2πr L r̂ . (3.7.57)

In the case of B⃗ we have to use Ampere’s law. Recall that we are going to relate the
magnetic field around a cycle to the current crossing a specific surface as:

∮
B⃗ · d⃗ l =µ0

∫
J⃗ · d⃗ A =µ0I . (3.7.58)

So this is just (do not forget the jacobian when changing from cartesian delta to cylin-
drical one):
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B⃗ ·2πr =−µ0

∫
γ

vz q
L δ(r −0)δ(θ−0) 1

r · r dr dθ =

=−2πµ0 2π
∫ ∞

0︸︷︷︸
s ym

γvz qδ(r−0)
L dr =

=−4π2 µ0
2

∫ ∞

−∞
γvz qδ(r−0)

L dr =
B⃗ =−µ0γvz q

πr L θ̂.

(3.7.59)

(Missing 2 and c are due to different unit system for different computations.)

3.7.7 Relativistic Ohm’s law

a)

We are asked to generalised the expression of the current for a wire from a more gen-
eral reference system. A general expression for the current in any frame, given by the
4-vector notation is:

Jµ = (ρ, J i ), With J i the usual three-dimensional current J⃗ . (3.7.60)

We can see in the description of the statement that it contains a four-velocity term.
Generally, this is of the form:

Uµ = (1,∂t xi ). (3.7.61)

In our case, this means that Uµ′ = (c,0), as the description is given in the rest frame.
One question that we may have is: How does the electric field looks in this frame?
Recall from previous exercises that F 0i = −E i . At this stage we have some tools to
"craft" the general covariant expression for Jµ.

Let’s start by looking at something of the form:

−F
′0iU′0 = η00F

′0iη00U
′0. (3.7.62)

Where the tilde stands for the rest frame. As we are in the rest frame, and U0 is the
only non-zero component of Uµ, we can generalise our expression to F

′µνU′ν. We
can see that this does not affect, as:
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F
′µνU′ν = F

′µ0U′0 +����
F

′µ1U′1 +·· · = (0,E
′i ). (3.7.63)

And then, sure of this property, we can multiply by σ to get RHS of the desired ex-
pression.30 This means we have something like this:

Jµ = (?, J i ) =σF
′µνU

′
ν. (3.7.64)

In a general frame, we will have the presence of the density around, but we want to
get rid of it in the LHS of the expression. In order to do so, we can again exploit the
fact that U

′i = 0. In this case, we can craft something like:

J
′µ = (ρ′, J

′i ) Contract both sides by U
′
µ,

J
′µU

′
µ = (ρi , J

′i ) (−1,0)︸ ︷︷ ︸
U0=η00U 0

=−ρ′ (3.7.65)

As we do not want ρ to appear at LHS of the covariant expression, we can add this
term to RHS. This terms should be multplied by a velocity, as the density will be mov-
ing depending to the reference system used. We have then:

(0, J i ) = J
′ν− (J

′µU
′
µ)U

′ν,

σF
′µνU

′
ν = J

′ν− (J
′µU

′
µ)U

′ν.
(3.7.66)

b)

So far we have just expressed J⃗ in the rest frame in a fancy four-dimensional way. But,
what happens to the expression if we boost to a laboratory frame and we say that the
material moves with v⃗ = cβ⃗? We know so far that in the laboratory frame:

Uµ = (γ,γv⃗), Jµ = (cρ, J⃗ ). (3.7.67)

We can take our previous results and try to impose these general expressions. Al-
though we are asked to find the expression for J⃗ , let’s calculate also J 0 (SPOILER: It
will help us to simplify J⃗ ).

30Observe that we work now with cgs system, so no c around.
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J 0 − 1
c2 (Uν Jν)U 0 = σ

c F 0νUν,

J 0 − 1
c2 (U0 J 0 +Ui J i )U 0 = σ

c (F 0iUi +�
���F 00U0),

cρ− 1
c2 (−γ2c4ρ+γ2v⃗ J⃗ c) = σ

c (−E i )γv⃗ ,

c2ρ (1+γ2)︸ ︷︷ ︸
=−β2γ2

−γ2v⃗ J⃗ =−σE⃗γv⃗ ,

−v⃗2ργ2 −γ2v⃗ J⃗ =−σE⃗γv⃗ .

(3.7.68)

For the case of Jµ we have:

J i − 1
c2 (Uν Jν)U i = σ

c F i /nUν,

J i − 1
c2 (U0 J 0 +Ui J i )U i = σ

c (F i 0U0 +F i jU j ),

J i − 1
c2 (−c2ργ+ J i v⃗)γv⃗ = σ

c (E iγc +ϵi j k Bkγv j︸ ︷︷ ︸
v⃗ × B⃗

),

J⃗ +ργ2v⃗ −γ2 1
c2 v⃗(v⃗ · J⃗ ) =σγ(E⃗ + 1

c v⃗ × B⃗).

(3.7.69)

We can further simplify eq (??) by taking v⃗ · J⃗ in eq (??) and substitute. Then one has
to massage the resulting RHS to obtain:

J⃗ =σγ(E⃗ −γβ2E⃗ + β⃗× B⃗)− v⃗ρ. (3.7.70)

As we wanted to find. Observe that J⃗ has changed. Now we have the electric field
contracted due to the Lorentz factor. B⃗ also joined the party.

c)

Let’s assume now that the medium is uncharged in the rest frame, so ρ′ = 0. How
does ρ and J⃗ look like from the laboratory frame? As ρ′ = 0 this means that:

Jµ
′ = (0, J⃗ ′), Uµ′ = (c,0) → Jµ

′
Uµ′ = 0. (3.7.71)

In the laboratory frame, things look like:

Jµ = (cρ, J⃗ ), Uµ = (cγ, v⃗γ). (3.7.72)
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So, we can see that ρ and J⃗ are of the form:

J 0 = ρ =σFν0Uν =σγv⃗ · E⃗ ,

J i = J⃗ =σFνiUν =σγ(E⃗ + v⃗ × B⃗).
(3.7.73)

3.7.8 E: A Loooooong Cylinder and Several Frames

UNDER CONSTRUCTION

3.7.9 E: Planes and Frames

UNDER CONSTRUCTION

3.7.10 E: Different Points of View

1):

This first part of the problem could be said to be straightforward. One just have to
boost Jµ to a new frame withΛ in the z-direction, so:

Jνboost =Λνµ Jµ = (
γ

(
cλ− v

c I
)

,0,0,γ (I − vλ)
)

. (3.7.74)

2):

In this part of the problem one can be confused and may try to compute things when
they are not needed. If we want to boost to a frame where E′ vanishes, this means
that the charge linear density λ′ in that frame should be equal to "0". By just looking
at previous section results, this requires I > cλ. On the other hand, if we want to
find B′ boosting to a specific frame, we just have to recall Biot-Savart and check that
I ′ = 0 in this frame. This will happen when cλ> I .These are the conditions we need
to impose.

3.7.11 E: Waves Across Reference Frames

UNDER CONSTRUCTION

3.8 Lagrangian Manipulations

3.8.1 A Relativistic Particle Coupled to a Scalar Field

We have the following:
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S =−mc2
∫

d s − g
∫

d sϕ(r(s)). (3.8.1)

The first term is the action of a free point particle. The Lagrangian of the latter is
Lp =−mc2/γ. Therefore, in terms of the proper time differential dτ= d t/γ,

Sp =−mc2
∫

d t

γ
=−mc2

∫
dτ=−mc

∫
d(cτ). (3.8.2)

We conclude that d s = cdτ and the total Lagrangian can be written as a function of
time:

L =−mc2

γ
− g c

γ
ϕ(r(t )), (3.8.3)

Where r is the canonical coordinate and v (inside γ) is the canonical momenta. So
now, we just have to calculate the Euler-Lagrange equation to get the EOM.

d

d t

(
∂L

∂v

)
− ∂L

∂r
= 0,

d

d t

(
γmv+γg

v

c
ϕ

)
− g c

γ
∇⃗ϕ= 0,

d

d t
(γmvc) =−

(
d

d t

(
gγ

v

c
ϕ

)
+ g c

γ
∇ϕ

)
.

(3.8.4)

Observe that the first term corresponds to the Coulomb "Force", while the last one to
the right seems like the E -field with a ϕ as potential. One can think of the remaining
term as a correction to the Coulomb force expression.

3.8.2 One-Dimensional Massive Scalar Field

This is a basic problem to get used to Lagrangian (and in this case Hamiltonian) ma-
nipulation. If we isolate the Lagrangian density, we have:

L = 1

2

[
1

c2

(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2

−m2ϕ2
]

. (3.8.5)

As the only canonical coordinate is ϕ(x, t ), we just have one EOM given by:
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0 = d

d t

∂L

∂ϕ̇
− ∂L

∂ϕ
+ ∂

∂x

∂L

∂(∂ϕ/∂x)
=

= 1

c2

d

d t
ϕ̇+m2ϕ− ∂

∂x

∂ϕ

∂x
=

= 1

c2

∂2ϕ

∂t 2
− ∂2ϕ

∂x2
+m2ϕ=

EOM = 1

c2
ϕ̈− ∂2ϕ

∂x2
+m2ϕ= 0.

(3.8.6)

Now we generalise the momentum using π = ∂L /∂ϕ̇ = ϕ̇/c2. Therefore, the Hamil-
tonian density is:

H =πϕ̇−L =

=π∂ϕ
∂t

− 1

2

[
1

c2

(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2

−m2ϕ2
]
=

= 1

2

[
c2π2 + (∂ϕ/∂x)2 +m2ϕ2] .

(3.8.7)

And the Hamilton equations are given by:

π̇=−∂H
∂ϕ

+ ∂

∂x

∂H

∂(∂ϕ/∂x)
=−m2ϕ+ ∂2ϕ

∂x2
. (3.8.8)

ϕ̇= ∂H

∂π
− ∂

∂x

∂H

∂(∂π/∂x)
= c2π. (3.8.9)

We can go further and derive (??) respect to t to arrive to the final expression

1

c2
ϕ̈+m2ϕ− ∂2ϕ

∂x2
= 0. (3.8.10)

Which exactly correponds to the EOM derived by the Lagrangian method.
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3.8.3 Introduction to Lagrangian Manipulations

a): In this first part of this problem, we will learn how to deal with indices manipula-
tion in a deeper way than previous exercises. But first, the important things. Recall
that Equations Of Motion (EOM) are given by the Euler-Lagrange equation as:

∂µ
∂L

∂(∂µφ) − ∂L
∂φ

= 0. (3.8.11)

Where φ corresponds to the canonical coordinates in our theory. In this case corre-
sponds to the 4-vector field Aµ. Then, we just have to move the wheel and produce
some terms.

∂L
∂(∂µAν) = ∂

∂(∂µAν) (∂å Aβ∂
å Aβ) =

= ∂
∂(∂µAν) (∂å Aβη

åγηβζ∂γAζ) =
= ∂µ(δµåδ

ν
βη

åγηβζ∂γAζ+δµγδνζηåγηβζ∂å Aβ) =
= Substitute indices in η by those ones in the δ=
= 2∂µ(∂µAν).

(3.8.12)

As for the other part of the EOM, we find:

∂L
∂An

= Jå
∂
∂Aν

Aå = Jåη
åβ∂Aν Aβ =

= Jåη
åβδνβ = Jν.

(3.8.13)

So we find that the equation of motion for the field Aν is given by (Factors have been
removed from previous calculations. One has to introduce them back):

1
4π∂µ∂

µAν = 1
c Jν. (3.8.14)

So, Does this look like Maxwell equations? Recall how they look like:

∂µFµν =µ0 Jν,

∂µ⋆Fµν = 0.
(3.8.15)

And what do we have (factors of π and c aside)? Let’s carefully expand the first ex-
pression in (??). This is:
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∂µFµν = ∂µ∂µAν− ∂µ∂
νAµ︸ ︷︷ ︸

What we do not have in ??

=µ0 Jν. (3.8.16)

So we can conclude that ∂µ∂νAµ is 0 in our case. This corresponds to the so called
Lorenz gauge (∂µAµ = 0). It is under this circumstance that the EOM ?? corresponds
to Maxwell’s equation.

b):

In order to show that both L differ by a four-divergence term (a.k.a ∂µvµ), let us
massage the well know Lel ec :

Lel ec =− 1
16πFαβFαβ− 1

c JαAα. (3.8.17)

So our intuition should be pointing towards the first term in the previous expression.
Can we transform this in such a way that it directly looks as a four-divergence is miss-
ing?

− 1
16πFαβFαβ =− 1

16π (∂αAβ−∂βAα)(∂αAβ−∂βAα) =
=− 1

16π (∂αAβ∂
αAβ−∂αAβ∂

βAα−∂βAα∂
αAβ+∂βAα∂βAα) =

=− 1
8π (∂αAβ(∂αAβ−∂βAα)).

(3.8.18)

So, if we take away both Lagrangians to see what the difference is, we will find that:

∆L = 1
8π∂αAβ∂

βAα. (3.8.19)

We are getting closer. The idea would be now to rearrange the previous expression
such that we can get something as ∂µAµ, so we can claim for a missing four-divergence.
At this stage we need some inspiration. Let assume derivative variations of the term
∂αAβ∂

βAα︸ ︷︷ ︸
⋆

as:

∂α(Aβ∂
βAα) = ∂αAβ∂

βAα︸ ︷︷ ︸
⋆

+ Aβ∂α∂
βAα︸ ︷︷ ︸

⋆⋆

,

∂β(Aβ∂αAα) = ∂βAβ∂αAα+ Aβ∂
β(∂αAα)︸ ︷︷ ︸
⋆⋆

.
(3.8.20)
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So we can use previous expressions to massage ∆L to obtain something like:

∆L ∝ (∂α(Aβ∂
βAα)− Aβ∂α∂

βAα),

∝ (∂α(Aβ∂
βAα)−∂β(Aβ∂αAα)+ (∂µAµ)2).

(3.8.21)

So we set the Lorenz gauge to 0 (∂βAβ = 0), while one expects∆L = 0, it is found that:

∆L ∝ ∂α(Aβ∂
βAα− Aα∂

βAβ). (3.8.22)

So we would not be able to find the initial difference given in ?? if we apply the Lorenz
gauge. This affects the EOM. This added four-divergence gives a surface term, which
will have no contribution, as Aµ is demanded to fall off rapidly enough when going
to ∞31.

So as the action of the divergence part goes to 0, it is not affected, neither the equa-
tions of motion.

3.8.4 Coupling Extra Fields to Aµ

a): For the action to be Lorentz invariant it is required to be a scalar. We can apply
some intelligence and divide the action in each of its terms. If all terms behave as
a scalar, the whole action will and it will be Lorentz invariant. Let’s analyse term by
term:

• ∂µa∂µa: We know that a(x) is a scalar field. We know that ∂µa(x) is a vector
field... But it is contracted with ∂µa(x), so the result is a scalar.

• FµνFµν is also a scalar, as its indices are contracted.

• aFµν ⋆ Fµν it is not so straightforward to see. In this case, we have to know
that the Hodge star ⋆ changes the sign under a coordinate reflection x⃗ →−x⃗.
If this is the case, any form that transform in this way will be called pseudo-
form. This pseudo-feature is inherited through products and combinations of
forms. Hence Fµν ⋆ Fµν is a pseudo-scalar. One fancy thing here is that the
combination of two pseudo-scalars gives a pure scalar. This can be used to
require a(x) to be a pseudo-scalar, to preserve Lorentz invariance in the whole
action.

31Other option would be to demand compact support of that form in a given region or computing
everything on a compact manifold, which is not the case for our regular space-time... Or is it?
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• ∂µ
(
a AνF̃µν

)
works as in the previous point. Pseudo-scalar × pseudo-scalar =

scalar.

b):

First of all, we have to realise that the Lagrangian comes within the action. This one
is given by:

L =−1

2
∂µa∂µa − 1

4
FµνFµν− 1

f

[
aFµν⋆Fµν−2∂µ

(
a Aν⋆Fµν

)]
. (3.8.23)

And the Euler-Lagrange equation giving EOM’s is:

∂µ

(
∂L

∂
(
∂µφ

))− ∂L

∂φ
= 0. (3.8.24)

In order to write down the EOM’s, we have to realise that we have two canonical co-
ordinates φ in this exercise; a(x) and Aµ. So we have:

∂µ

(
∂L

∂(∂µa)

)
− ∂L

∂a = 0,

∂µ

(
∂L

∂(∂µAν)

)
− ∂L
∂Aν

= 0.
(3.8.25)

Before we start computing like crazy, lets carefully observe the last term of the La-
grangian ??. If we massage it...

∂µ
(
a Aν⋆Fµν

)= ∂µ (
a Aν

1

2
ϵµνρσFρσ

)
= ∂µ

(
aϵµνρσAν∂ρAσ

)
. (3.8.26)

This is a total derivative that will no contribute to the EOM’s, as its initial and final
terms are equivalent. So, for the equation of motion of the axion a(x) we can compute
it to be:

−1

2
∂µ

[
∂ (∂τa)

∂
(
∂µa

)∂τa +∂τa
∂ (∂τa)

∂
(
∂µa

)]−
(
− 1

f
Fρσ⋆Fρσ

)
= 0,

−1

2
∂µ

(
2∂τa δµτ

)+ 1

f
Fρσ⋆Fρσ =−∂µ∂µa + 1

f
Fρσ⋆Fρσ = 0,

2a = 1

f
Fρσ⋆Fρσ.

(3.8.27)
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For the equation of motion of Aν we have to observe that there is no dependence on
Aν in L . Those are good news; We do not have to compute too much. This is:

∂µ

(
∂L

∂
(
∂µa

))= 0. (3.8.28)

Then the equation of motion is:

∂µ

−1

4

∂
(
FρσFρσ

)
∂
(
∂µAν

)︸ ︷︷ ︸
I

−a

f

∂
(
Fρσ⋆Fρσ

)
∂
(
∂µAν

)︸ ︷︷ ︸
II

= 0. (3.8.29)

It looks quite involved, so let’s apply a little bit of divide et vinces.

• I:

∂
(
FρσFρσ

)
∂
(
∂µAν

) = Fρσ
∂ (Fρσ)

∂
(
∂µAν

) + ∂
(
Fρσ

)
∂
(
∂µAν

)Fρσ =

= 2
∂
(
Fρσ

)
∂
(
∂µAν

)Fρσ = 2
∂
(
∂ρAσ−∂σAρ

)
∂
(
∂µAν

) Fρσ = 2
∂
(
2∂ρAσ

)
∂
(
∂µAν

) Fρσ =

= 4Fρσδ
µ
ρδ

ν
σ = 4Fµν.

(3.8.30)

• II:

∂
(
Fρσ⋆Fρσ

)
∂
(
∂µAν

) = Fρσ
∂ (⋆Fρσ)

∂
(
∂µAν

) + ∂
(
Fρσ

)
∂
(
∂µAν

) ⋆Fρσ =

= Fρσ
∂
(1

2ϵ
ρσαβFαβ

)
∂
(
∂µAν

) +2⋆Fρσδ
µ
ρδ

ν
σ = 2

1

2
ϵρσαβFρσδ

µ
αδ

ν
β+2⋆Fµν =

= 4⋆Fµν.
(3.8.31)

Then, puting I + I I together one gets the final result:
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∂µ

[
−Fµν− 4a

f
⋆Fµν

]
= 0,

−∂µFµν− 4

f

(
∂µa

)
⋆Fµν− 4a

f �����∂µ⋆Fµν = 0,

∂µFµν =− 4

f

(
∂µa

)
⋆Fµν.

(3.8.32)

c): To show that the action is invariant under a scalar transformation of the form
a → a + ϵ, we just have to check that all terms in the action remain the same. This
means:

•
∂µ(a +ϵ) = ∂µa +�

�∂µϵ= ∂µa. (3.8.33)

•
(a +ϵ)Fµν⋆Fµν = aFµν⋆Fµν+ϵFµν⋆Fµν. (3.8.34)

•
−2∂µ

[
(a +ϵ)Aν⋆Fµν

]=−2∂µ
[
a Aν⋆Fµν

]−2∂µ
[
ϵAν⋆Fµν

]
. (3.8.35)

We can see that it looks like there are two terms that still contain an ϵ. Do they anhilite
each other? Let’s study it. We can call K to this term and expand.

K = ϵFµν⋆Fµν−2∂µ
[
ϵAν⋆Fµν

]= ϵFµν⋆Fµν−2���(
∂µϵ

)
Aν⋆Fµν

−2
(
∂µAν

)
ϵ⋆Fµν−2ϵ������(

∂µ⋆Fµν
)

Aν =
= ϵFµν⋆Fµν−2ϵ∂µAν︸ ︷︷ ︸

=1
2 Fµν

⋆Fµν = 0 (3.8.36)

Everything cancels in the end, so the action is invariant under this transformation.
And we know that every invariance of the action has a conserved charged asociated
to a Noether current.

d):

While this part of the exercise is beyond the scope of this course and problems, we
can always solve it, for the pleasure of those with knowledge gluttony. We know that
the current is:
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jµ =L
δxµ

δϵ
+ ∂L

∂
(
∂µφ

) δ0φ

δϵ
. (3.8.37)

Associated changes to the coordinates respect to the field displacement in the previ-
ous section are given by:

δxµ

δϵ
= 0;

δ0a

δϵ
= 1;

δ0 Aν

δϵ
= 0. (3.8.38)

So the current ends up to be:

jµ = ∂L

∂
(
∂µa

) ,

=−1

2
∂µa + 2

f
Aν⋆Fµν.

(3.8.39)

3.8.5 E: Ponderous Light

1):

To prove this invariance, we just have to go by pieces of the whole action. We know:

Fµν→ ∂µAν+∂µ∂να−∂νAµ−∂ν∂µα= Fµν+ (∂µ∂να−∂ν∂µα) = Fµν. (3.8.40)

Similarly, for the term with the current:

JµAµ→ JµAµ− Jµ∂µα= JµAµ−

∂µ(Jµα)︸ ︷︷ ︸
Stokes=0

−α∂µ Jµ︸ ︷︷ ︸
=0

= JµAµ. (3.8.41)

And finally, checking the problematic term we find:

∂µφ−m Aµ→ ∂µφ−m Aµ+m
(
∂µα−∂µα

)= ∂µφ−m Aµ. (3.8.42)

So our action is invariant under such gauge transformation. How does it looks like if
we fix φ= 0? It looks like:
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L = m2

8π AµAµ− 1
16πFµνFµν− 1

c JµAµ. (3.8.43)

2):

Again, here we do not have to work too much. The second and third term in the previ-
ous Lagrangian will give rise to the well know equation of motion of Electromagnetic
theory. The first one is something new. This will contribute as:

EOM
m2

4π
Aµ+ 1

4π
∂νFµν = Jµ

c
. (3.8.44)

3):

Doing as the problem says, lets contract both sides with a partial derivative:

m2

4π
∂µAµ+ 1

4π
∂µ∂νFµν︸ ︷︷ ︸

=0 by antisym

= ∂µ Jµ

c︸ ︷︷ ︸
=0

→ ∂µAµ = 0. (3.8.45)

Inserting back this Lorentz gauge into the EOM we find:

(
2+m2) Aµ = 4π

c
Jµ. (3.8.46)

4):

So we have to basically solve here the previous equation when RHS is equal to 0.
Recall that a plane wave is of the form:

Aµ =A µe
i
(⃗
kx⃗−ωt

)
. (3.8.47)

Which plugged into expression (??) yields:

ω2 = c2(k2 +m2). (3.8.48)

For the polarisation it is a little bit trickier. In this case one has to look at the Lorentz
gauge condition ∂µAµ = 0 to find that:
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−i

c
ωA 0 + i k⃗ · A⃗ = 0. (3.8.49)

Solving this equation for A 0 one finds 3 polarisations (one for each individual possi-
ble value of k⃗.)

3.9 Radiation and Relativistic Dynamics

3.9.1 Emission Rates by Lorentz Transformation

In the (momentary) rest frame of the electron, the particle acceleration is given by
F ′ = ma′ = eE ′ and Larmor’s formula gives the exact rate at which the particle radi-
ates energy:

P ′ = dU ′

d t ′
= 1

4πϵ0

2e2

3c3

(
d p ′

d t ′

)2

= 1

4πϵ0

2e2

3c3

e2E ′2

m2
. (3.9.1)

Figure 31: The system we want to study.

Therefore, the total energy lost to radiation (recall that P = E
t and there is no change

in v⃗ of the e−) is;

∆U ′ = P ′t ′ = 1

4πϵ0

2e4E ′2t ′

3m2c3
(3.9.2)
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We have to realise that there is no preferred direction in the rest frame, so ∆P ′ = 0.
Transforming to the laboratory frame,

∆U = γ∆U ′ = γ
√
∆U ′2 +���∆P 2 = γ 1

4πϵ0

2e4E ′2t ′

3m2c3
. (3.9.3)

The electric field E⃗ is parallel to the boost, so E = E ′. The electron transit time through
the capacitor is t = d/v and t = γt ′ by time dilation. Therefore,

∆U = γ 1

4πϵ0

2e4E ′2t ′

3m2c3
= 1

4πϵ0

2e4E 2d

3m2c3v
. (3.9.4)

The associated total momentum radiated is

∆P = γ(
�
��∆P ′+ v∆U ′/c2)= γv∆U ′

c2
= v∆U

c2
= 1

4πϵ0

2e4E 2d

3m2c5
. (3.9.5)

3.9.2 A Merry Go Round of Radiating Particles

For a single charged particle, the Liénard-Wiechert electric field is:

E(r, t ) = q

4πϵ0

 (n̂−β)

γ2(1− n̂ ·β)3R2︸ ︷︷ ︸
Static fields ∝ 1/R2

+ n̂× {(n̂−β)× β̇}

c(1− n̂ ·β)3R︸ ︷︷ ︸
Radiative fields ∝ 1/R


ret

(3.9.6)

Basically we have to prove that our final result only contains the first term. In order
to do so, the first question we have to answer for this problem is: How does the set up
look like? Observe the following sketch.

So we have to compute the position and velocity variables for a generic particle in
this system. For simplicity, let us take the center of coordinates lying on the position
p⃗ of the z axis. So R(t ) is given by:

Rk (t ) = p⃗ − q⃗k (t ) =−a cos
(
ωt +φk

)
x̂−a sin

(
ωt +φk

)
ŷ+ zẑ, (3.9.7)

where v = aω (ω is the angular velocity of these particles) and φk = 2πk/N . From
the sketch above, Rk =

p
a2 + z2 = R is the same for all the particles and constant, so

n̂ = R/|R|. What is the velocity? And the acceleration?
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Figure 32: A frame of the motion of N particles around an axis.

βk =−∂qk

c ∂t
=β[−sin

(
ωt +φk

)
x̂+cos

(
ωt +φk

)
ŷ
]

,

β̇k =−∂βk

∂t
=−ωβ[

cos
(
ωt +φk

)
x̂+ sin

(
ωt +φk

)
ŷ
]

.
(3.9.8)

Step by step, we get closer to the solution. Now, we have to compute the scalar and
vector products as:

n̂k ·βk = (− a
|R| cos(. . . ) ,− a

|R| sin(. . . ) , z) · (−βsin(. . . ) ,βcos(. . . ) ,0) = 0,

n̂k ×
((

n̂k −β
)× β̇)= (

n̂k −β
)(

n̂k · β̇
)− β̇︸ ︷︷ ︸

a⃗×b⃗×c⃗=b(a⃗ ·⃗c)−c(a⃗ ·⃗b)

. (3.9.9)

Where:

(
n̂k · β̇

)= cβ2

|R| . (3.9.10)

And
(
n̂k −β

)
is left untouched for convenience. Then, after some computation we

have all the necessary terms to compute the electric field, which is given by:
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E(z, t ) = q

4πϵ0

N∑
k=1


(
n̂k −βk

)
R2

 1

γ2
+β2︸ ︷︷ ︸
= 1

− β̇k

cR


ret

= q

4πϵ0

N∑
k=1

[(
n̂k −βk

)
R2

− β̇k

cR

]
ret

.

(3.9.11)

At this point of the problem, we need to realise something. The x - and y -components
of this electric field vanish because, when N > 1,

N∑
k=1

cos
(
ωt +φk

)= N∑
k=1

sin
(
ωt +φk

)= 0. (3.9.12)

The proof that both sums vanish is something as:

N∑
k=1

e i(ωt+φk ) = e i (ωt+2π/N )
N∑

k=1
e i (k−1)2π/N = e i (ωt+2π/N ) 1−e i 2π

1−e i 2π/N
= 0. (3.9.13)

One can also see this vanishing by considering an even32 number of particles. In
this case, by the radial symmetry in the system, each vector Rk will have a "counter"
vector R−k , whose x̂ and ŷ components will have opposite sign of the k vector ones.
So the only term in (??) which survives is the z -component of n̂k . Hence, the electric
field on the symmetry axis is:

E(z, t ) = ẑ
q

4πϵ0

N∑
k=1

[ z

R3

]
ret

= qN z

4πϵ0R3
ẑ (N > 1). (3.9.14)

Which has not time component involved, neither explicit nor implicit. This indicates
a static configuration of the electric field.

3.9.3 The Direction of the Velocity Field

The velocity field is given by:

E = q

4πϵ0

[
n̂−β
γ2g 3R2

]
ret

(3.9.15)

32In the case of odd number, one can take 3 particles and check that the sum of 2 of the i -
components correspond to the remaining one with oposite sign.
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And the direction of this field is the same as the direction of the vector,

[R−βR]ret = r− r0 (tret)−β |r− r0 (tret)| . (3.9.16)

For our convenience, let the observer sit at the origin (r = 0). Then, because the re-
tarded time is defined as:

tret + r0 (tret)/c − t = 0, (3.9.17)

the velocity electric field can be expressed as:

E ∝−r0 (tret )− v (tret )

c
r0 (tret ) =−r0 (tret )−v (tret ) (t − tret ) =

=− [r0 (tret )+v (tret ) (t − tret )] =−rA.
(3.9.18)

The diagram below shows that this proves the assertion.

3.9.4 Radiating 14.4 Jackson Problem

a):

In the non-relativistic limit, the radiated power is given by

dP (t )

dΩ
= e2

4πc
|n̂ × ˙⃗

β|2. (3.9.19)
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For this part of the problem, we just have to make the observation that the particle
has an harmonic motion along the z axis, so we take:

r⃗ = ẑa cosω0t , β⃗= ∂⃗r

c ∂t
=−ẑ

aω0

c
sinω0t , ˙⃗

β=−ẑ
aω2

0

c
cosω0t . (3.9.20)

By symmetry, we can assume the observer is in the x−z plane tilted with angle θ from
the vertical. This means that we take the normal n̂ to be:

n̂ = x̂ sinθ+ ẑ cosθ. (3.9.21)

Now we have all the ingredients to cook up the formula (??), so:

n̂ × ˙⃗
β= aω2

0

c
sinθcosω0t ŷ , ⇒ dP (t )

dΩ
= e2a2ω4

0

4πc3
sin2θcos2ω0t . (3.9.22)

And then, taking a time average
(
cos2ω0t → 1/2

)
this gives:

dP

dΩ
= e2a2ω4

0

8πc3
sin2θ. (3.9.23)

To get the total power radiated, we just have to integrate over the solid angle Ω, re-
sulting:

P = e2a2ω4
0

3c3
. (3.9.24)

We can now plot how the radiated energy per solid angle looks like,

b):

Now the particle decides to move along a circle of radius R with constant angular
frecuency ω0. This means that its position vector r⃗ is given by:

r⃗ = R
(
x̂ cosω0t + ŷ sinω0t

)
. (3.9.25)

Therefore, the velocity and the acceleration derived from this previous expression
are:
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Figure 33: Distribution of the radiation for a bouncing particle.

β⃗= Rω0

c

(−x̂ sinω0t + ŷ cosω0t
) → ˙⃗

β=−Rω2
0

c

(
x̂ cosω0t + ŷ sinω0t

)
. (3.9.26)

Then, sitting at the same position as in the previous part of this exercise (a.k.a. same
n̂), one can find:

n̂ × ˙⃗
β=−Rω2

0

c

[
cosθcosω0t ŷ + (sinθ ẑ −cosθ x̂)sinω0t

]
. (3.9.27)

And again, the distribution of radiation is:

dP (t )

dΩ
= e2R2ω4

0

4πc3

(
cos2θcos2ω0t + sin2ω0t

)
. (3.9.28)

Taking time average gives:

dP

dΩ
= e2R2ω4

0

8πc3

(
1+cos2θ

)
. (3.9.29)

And the total radiation, after integrating is:

P = 2e2R2ω4
0

3c3
. (3.9.30)
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In this case, the distribution of radiation across the solid angle is a little bit more
involved, but easy to obtain using Mathematica or something similar.

Figure 34: Distribution of the radiation for a particle in a circular motion.

3.9.5 A Fast Particle in a Constant Electric Field

The equation of motion is the basic one for a charged particle moving in a constant
field E, as

dp

d t
= qE. (3.9.31)

Figure 35: The motion of the particle within the field E.
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With this, we can obtain the momentum of the particle depending on t . We just have
to solve the differential equation imposing the initial condition p(0) = γmu0 ŷ . Then
we have:

p(t ) = p0ŷ+qEt ẑ. (3.9.32)

The initial (total) energy of the particle is E0 =
√

c2p2
0 +m2c4. Therefore, the instan-

taneous velocity of the particle is:

u(t ) = c2p

E
= c2p√

c2p2 +m2c4
= p0ŷ+qEt ẑ√

E 2
0 + c2q2E 2t 2

c2. (3.9.33)

The particle speed goes u → c as t →∞. One can integrate the previous expression
once respect to time to get r(t ) as:

r(t ) = ŷ
cp0

qE
sinh−1

(
cqEt

E0

)
+ ẑ

1

qE

√
E 2

0 + c2q2E 2t 2. (3.9.34)

The origin of coordinates so the integration constants are zero. Eliminating t and
using the properties of sinh x and cosh y we can arrive to the expected expression if:

(x, y, z) =
(
0,

cp0

qE
sinh−1

(
cqEt

E0

)
,

1

qE

√
E 2

0 + c2q2E 2t 2

)
→

(
qE y

cp0

)
= sinh−1

(
cqEt

E0

)
, z = 1

qE

√
E 2

0 + c2q2E 2t 2,

cosh

(
qE y

cp0

)
= cosh

(
sinh−1

(
cqEt

E0

))
=

√
1+

(
cqEt

E0

)2

,

→ z = E0

qE
cosh

(
qE y

cp0

)
.

(3.9.35)

The non-relativistic limit is u ≪ c or cqEt ≪ E0. We recover the expected parabolic
trajectory in this limit because cosh x ≈ 1+ 1

2 x2 when x ≪ 1.
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3.9.6 A Ringy Radiating Problem

1):

In the rest frame, ϕ′ = 0 and

A′ (r′
)= µ0

4π

m′× r′

r ′3 . (3.9.36)

Therefore,

A′
⊥ = µ0

4π

m′
⊥× r′∥+m′

∥× r′⊥
r ′3 , A′

∥ =
µ0

4π

m′
⊥× r′⊥
r ′3 . (3.9.37)

On the other hand,

A⊥ = A′
⊥,

A∥ = γ
(
A′
∥+v0ϕ

′/c2)= γA′
∥,

ϕ= γ(
ϕ′+v0 ·A′)= γv0 ·A′.

(3.9.38)

All together becomes,

A⊥ = µ0

4π

m⊥×γ(
r∥−v0t

)+γm∥× r⊥{
γ2

(
r∥−v0t

)2 + r2
⊥
}3/2

= γµ0

4π

(m×R)⊥{
γ2R2

∥+R2
⊥
}3/2

,

A∥ = γµ0

4π

m′
⊥× r′⊥{

γ2
(
r∥−v0t

)2 + r2
⊥
}3/2

= γµ0

4π

(m×R)∥{
γ2R2

∥+R2
⊥
}3/2

.

(3.9.39)

Adding up both components we get A as:

A = γµ0

4π

m×R{
γ2R2

∥+R2
⊥
}3/2

. (3.9.40)

Similarly,
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ϕ= v0 ·A∥ = γµ0

4π

v0 · (m×R){
γ2R2

∥+R2
⊥
}3/2

. (3.9.41)

2):

In the non-relativistic limit, γ→ 1, so

A = µ0

4π

m×R

R3
,

ϕ= µ0

4π

v0 · (m×R)

R3
= 1

4πϵ0

(v0 ×m) ·R/c2

R3
.

(3.9.42)

These are the vector and scalar potentials for a system moving at a velocity v0 with a
magnetic dipole moment m and an electric dipole moment p = (v0 ×m)/c2.

144


